Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 8, pp 6951–6965 | Cite as

TLBO-Optimized FOPI Controller for Three-Phase Active Rectifier Using ZDPC Technique

  • Amit KumarEmail author
  • Gopalakrishna Srungavarapu
Research Article - Electrical Engineering
  • 19 Downloads

Abstract

Traditional direct power control (DPC) method is a simple and proficient way to control the three-phase active rectifiers, but its response is unacceptable when the power converter is subjected to abnormal grid conditions. This paper proposes the zero direct power control (ZDPC) methodology with teaching–learning-based optimal fractional order proportional integral (FOPI) controller to improve the performance of DPC method under unbalanced and harmonically polluted grid voltage conditions. In the proposed approach, a better performance is obtained by directly controlling the instantaneous active and reactive powers of the harmonic component of currents considering a predefined lookup table. In the proposed technique to achieve the complete elimination of the impact of the grid disturbance, the reference of both active and reactive powers is explicitly provided from outside of the controller and is set to zero. The teaching–learning-based optimized (TLBO) FOPI controller is utilized for better regulation of dc bus voltage. Additionally, the proposed approach does not require any prior familiarity with disturbance behavior, sequence components of voltages and currents. Also, it does not need harmonic component extractions. In the proposed control technique, a simple phase-locked loop (PLL) is utilized to extract the fundamental component of currents and to obtain the angular position of the grid voltage space vector in the stationary \(\upalpha \)-\(\upbeta \) reference frame. The simulation results have confirmed the supremacy of the proposed ZDPC with optimal FOPI under unbalanced and harmonically contaminated grid conditions as compared to conventional DPC.

Keywords

Zero direct power control (ZDPC) Lookup table Phase-locked loop (PLL) Fractional order proportional integral (FOPI) Teaching–learning-based optimization (TLBO) 

List of Symbols

\( e_{g},_{ a}, e_{g},_{ b }\) and \(e_{g},_{ c }\)

Phase voltages of the grid

\( e_{g},_{{\varvec{\alpha }}}\) and \(e_{g},_{{\varvec{\beta }}}\)

Grid voltages in stationary \({\varvec{\upalpha }}{\varvec{\upbeta }}\) reference frame

\( i_{g},_{{\varvec{\alpha }}}\) and \(i_{g},_{{\varvec{\beta }}}\)

Grid currents in stationary \({\varvec{\upalpha }}{\varvec{\upbeta }}\) reference frame

\( i_{g},_{ a}, i_{g},_{ b }\) and \(i_{g},_{ c }\)

Grid line currents

\( i_{g},_{ ah,} \ i_{g},_{ bh}\) and \(\ i_{g},_{ ch }\)

Harmonic component of grid currents

\( i^{*}_{g},_{ a1}, i^{*}_{g},_{ b1 }\) and \(i^{*}_{g},_{ c1}\)

Fundamental currents extracted with PLL

\( v_{\mathrm{conv}},_{ a}, v_\mathrm{{conv}},_{ b }\) and \(v_{\mathrm{conv}, c }\)

AC terminal voltages of the converter

pq

Total instantaneous active and reactive powers

\( p_{h}, q_{h}\)

Powers due to harmonic component of grid currents

\( p_{h }^*, \ q_{h }^*\)

Reference harmonic powers

\( S_{a}, S_{b}, S_{c }\)

Switching states of upper switches of the converter

\( S^{{\prime }}_{a},S^{{\prime }}_{b}\), \(^{{\prime }}_{c}\)

Switching states of lower switches of the converter

LR

Inductance and resistance of the smoothing inductor

C

DC link capacitor

\( R_{L}\)

Load resistance

\( v_\mathrm{{dc}}\)

DC link voltage

\( v^{*}_\mathrm{{dc}}\)

Reference DC bus voltage

\( T_{s}\)

Sampling period

\( F_{s}\)

Sampling frequency

\( H_{p}\)

Upper limit of hysteresis active power controller

\( H_{q}\)

Upper limit of hysteresis reactive power controller

\(-H_{p}\)

Lower limit of hysteresis active power controller

\(-H_{q}\)

Lower limit of hysteresis reactive power controller

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rodriguez, J.; Dixon, J.; Espinoza, J.; et al.: PWM regenerative rectifiers: state of the art. IEEE Trans. Ind. Electron. 52(1), 5–22 (2005)CrossRefGoogle Scholar
  2. 2.
    Kumar, A.; Srungavarapu, G.: Power quality assessment of table based direct power control for active front-end rectifiers. In: Proceedings of IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 2016, pp. 1–6 (2016). https://doi.org/10.1109/ICPEICES.2016.7853471
  3. 3.
    Singh, B.; Singh, B.N.; Chandra, A.; et al.: A review of three-phase improved power quality AC-DC converters. IEEE Trans. Ind. Electron. 51(3), 641–660 (2004)CrossRefGoogle Scholar
  4. 4.
    Ribeiro, P.F.: Common misapplications of the IEEE 519 harmonic standard: Voltage or current limits. In: Proceedings of IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, 2008; pp. 1–3 (2008).Google Scholar
  5. 5.
    Dalali, M.; Jalilian, A.: Indices for measurement of harmonic distortion in power systems according to IEC 61000-4-7 standard. IET Gener. Transm. Distrib. 9(14), 1903–1912 (2015)CrossRefGoogle Scholar
  6. 6.
    Malinowski, M.; Kazmierkowski, M.P.; et al.: Comparative study of control techniques for PWM rectifiers in AC adjustable speed drives. IEEE Trans. Power Electron. 18(6), 1390–1396 (2003)CrossRefGoogle Scholar
  7. 7.
    Razali, A.M.; Rahman, M.A.: Performance analysis of three-phase PWM rectifier using direct power control. In: Proceedings of IEEE International Electric Machines & Drives Conference (IEMDC), Niagara Falls, 2011; pp. 1603–1608 (2011).Google Scholar
  8. 8.
    Negm, M.M.; Bakhashwain, J.M.; Shwehdi, M.H.: Speed control of a three-phase induction motor based on robust optimal preview control theory. IEEE Trans. Energy Convers. 21(1), 77–84 (2006)CrossRefGoogle Scholar
  9. 9.
    Zhang, Y.; Li, Z.; et al.: Performance improvement of direct power control of PWM rectifier with simple calculation. IEEE Trans. Power Electron. 28(7), 3428–3437 (2013)CrossRefGoogle Scholar
  10. 10.
    Boudries, Z.; Ziani, D.R.: Study on decoupling direct power control of PWM rectifier using space vector modulation. Arab. J. Sci. Eng. 38, 875–882 (2013)CrossRefGoogle Scholar
  11. 11.
    Noguchi, T.; Tomiki, H.; et al.: Direct power control of PWM converter without power-source voltage sensors. IEEE Trans. Ind. Appl. 34(3), 473–479 (1998)CrossRefGoogle Scholar
  12. 12.
    Malinowski, M.; Kazmierkowski, M.P.: Simulation study of virtual flux based direct power control for three-phase PWM rectifiers. In: Proceedings of 26th IEEE International Conference on Industrial Electronics, Control and Instrumentation, Nagoya, 2000; pp. 2620–2625 (2000).Google Scholar
  13. 13.
    Malinowski, M.; Kazmierkowski, M.P.; et al.: Virtual-flux-based direct power control of three-phase PWM rectifiers. IEEE Trans. Ind. Appl. 37(4), 1019–1027 (2001)CrossRefGoogle Scholar
  14. 14.
    Malinowski, M.; Jasinski, M.; Kazmierkowski, M.P.: Simple, direct power control of three-phase PWM rectifier using space-vector modulation (DPC-SVM). IEEE Trans. Ind. Electron. 51(2), 447–454 (2004)CrossRefGoogle Scholar
  15. 15.
    Razali, A.M.; Rahman, M.A.; et al.: Analysis and design of new switching lookup table for virtual flux direct power control of grid-connected three-phase PWM AC-DC converter. IEEE Trans. Ind. Appl. 51(2), 1189–1200 (2015)CrossRefGoogle Scholar
  16. 16.
    Kumar, A.; Srungavarapu, G.: A novel voltage sensorless DPC approach of AFE rectifier based on virtual flux and dynamic DC link reference design. In: Proceedings of IEEE Annual India Conference (INDICON), Bangalore, India, 2016, pp. 1–6 (2016).  https://doi.org/10.1109/INDICON.2016.7838891
  17. 17.
    Bouafia, A.; Gaubert, J.P.; Krim, F.: Predictive direct power control of three-phase pulse-width modulation (PWM) rectifier using space vector modulation (SVM). IEEE Trans. Power Electron. 25(1), 228–236 (2010)CrossRefGoogle Scholar
  18. 18.
    Zhang, Y.; Peng, Y.; et al.: Model predictive control and direct power control for PWM rectifiers with active power ripple minimization. IEEE Trans. Ind. Electron. 52(6), 4909–4918 (2016)CrossRefGoogle Scholar
  19. 19.
    Zhang, Y.; Xie, W.; Zhang, Y.: Deadbeat direct power control of three-phase pulse-width modulation rectifiers. IET Power Electron. 7(6), 1340–1346 (2014)CrossRefGoogle Scholar
  20. 20.
    Hu, J.; Zhu, J.; Dorrell, D.G.: In-depth study of direct power control strategies for power converters. IET Power Electron. 7(7), 1810–1820 (2014)CrossRefGoogle Scholar
  21. 21.
    Kouro, S.; Cortes, P.; Vargas, R.; et al.: Model predictive control -a simple and powerful method to control power converters. IEEE Trans. Ind. Electron. 56(6), 1826–1838 (2009)CrossRefGoogle Scholar
  22. 22.
    Alonso-Martínez, J.; Carrasco, J.E.G.; Arnaltes, S.: Table-based direct power control: a critical review for microgrid applications. IEEE Trans. Power Electron. 25(12), 2949–2961 (2010)CrossRefGoogle Scholar
  23. 23.
    Ghosh, R.; Narayanan, G.: Control of three-phase, four wire PWM rectifier. IEEE Trans. Power Electron. 23(1), 96–106 (2008)CrossRefGoogle Scholar
  24. 24.
    Malinowski, M.; Kazmierkowski, M.P.; Trzynadlowski, A.: Review and comparative study of control techniques for three-phase PWM rectifiers. Elsevier Math. Comput. Simul. 63, 349–361 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Liserre, M.; Dell’Aquila, A.; Blaabjerg, F.: Genetic algorithm-based design of the active damping for an LCL-filter three-phase active rectifier. IEEE Trans. Power Electron. 19(1), 76–86 (2004)CrossRefGoogle Scholar
  26. 26.
    Malinowski, M.; Bernet, S.: A simple voltage sensorless active damping scheme for three-phase PWM converters with LCL filter. IEEE Trans. Ind. Electron. 55(4), 1871–1880 (2008)CrossRefGoogle Scholar
  27. 27.
    Yin, B.; Oruganti, R.; Panda, S.K.; Bhat, A.K.S.: An output-power-control strategy for a three-phase PWM rectifier under unbalanced supply conditions. IEEE Trans. Ind. Electron. 55(5), 2140–2150 (2008)CrossRefGoogle Scholar
  28. 28.
    Dannelh, J.; Wessels, C.; Fuchs, F.W.: Limitations of voltage-oriented PI current control of grid-connected PWM rectifiers with LCL filters. IEEE Trans. Ind. Electron. 56(2), 380–388 (2009)CrossRefGoogle Scholar
  29. 29.
    Bouafia, A.; Krim, F.; Gaubert, J.P.: Design and implementation of high-performance direct power control of three-phase PWM rectifier, via fuzzy and PI controller for output voltage regulation. Elsevier Energy Convers. Manag. 50(1), 6–13 (2009)CrossRefGoogle Scholar
  30. 30.
    Bouafia, A.; Krim, F.; Gaubert, J.P.: Fuzzy-logic-based switching state selection for direct power control of three-phase PWM rectifier. IEEE Trans. Ind. Electron. 56(6), 1984–1992 (2009)CrossRefGoogle Scholar
  31. 31.
    Sato, A.; Noguchi, T.: Voltage-source PWM rectifier-inverter based on direct power control and its operation characteristics. IEEE Trans. Power Electron. 26(5), 1559–1567 (2011)CrossRefGoogle Scholar
  32. 32.
    Cortés, P.; Kazmierkowski, M.P.; Kennel, R.M.; Quevedo, D.E.; Rodríguez, J.: Predictive control in power electronics and drives. IEEE Trans. Ind. Electron. 55(12), 4312–4324 (2008)CrossRefGoogle Scholar
  33. 33.
    Antoniewicz, P.; Kazmierkowski, M.P.: Virtual-flux-based predictive direct power control of AC/DC converters with online inductance estimation. IEEE Trans. Ind. Electron. 55(12), 4381–4390 (2008)CrossRefGoogle Scholar
  34. 34.
    Kumar, A.; Srungavarapu, G.: A power quality enhanced grid voltage sensorless predictive direct power control for active front end rectifiers. Trans. Inst. Meas. Control 40(13), 3809–3823 (2018)Google Scholar
  35. 35.
    Zhang, Y.; Qu, C.; Gao, J.: Performance improvement of direct power control of PWM rectifier under unbalanced network. IEEE Trans. Power Electron. 32(3), 2319–2328 (2017)CrossRefGoogle Scholar
  36. 36.
    Rahoui, A.; Bechouche, A.; Seddiki, H.; Abdeslam, D.O.: Grid voltages estimation for three-phase PWM rectifiers control without AC voltage sensors. IEEE Trans. Power Electron. 33(1), 859–875 (2018)CrossRefGoogle Scholar
  37. 37.
    Djazia, K.; Krim, F.; Chaoui, A.; Sarra, M.: Active power filtering using the ZDPC method under unbalanced and distorted grid voltage conditions. Energies 8, 1584–1605 (2015).  https://doi.org/10.3390/en8031584 CrossRefGoogle Scholar
  38. 38.
    Bouafia, A.; Gaubert, J.P.; Krim, F.: Direct power control scheme based on disturbance rejection principle for three-phase PWM AC/DC converter under different input voltage conditions. J. Electr. Syst. 8(4), 367–383 (2012)Google Scholar
  39. 39.
    Monje, C.A.; Vinagre, B.M.; Feliu, V.; Chen, Y.Q.: Tuning and auto-tuning of fractional order controllers for industry applications. Control Eng. Pract. 16, 798–812 (2008)CrossRefGoogle Scholar
  40. 40.
    Luo, Y.; Chen, Y.Q.; Wang, C.Y.; Pi, Y.G.: Tuning fractional order proportional integral controllers for fractional order systems. J. Process Control 20, 823–831 (2010)CrossRefGoogle Scholar
  41. 41.
    Ahn, H.S.; Bhambhani, V.; Chen, Y.: Fractional-order integral and derivative controller for temperature profile tracking. Sadhana 34, 833 (2009)CrossRefzbMATHGoogle Scholar
  42. 42.
    Rao, R.V.; Savsani, V.J.; Vakharia, D.P.: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Design 43, 303–315 (2011)CrossRefGoogle Scholar
  43. 43.
    Rao, R.V.; Patel, V.: An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems. Sci. Iran. Trans. D Comput. Sci. Eng. Electr. Eng. 20(3), 710–720 (2013)Google Scholar
  44. 44.

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNITRourkelaIndia

Personalised recommendations