Advertisement

Effect of Silica/Graphene Nanohybrid Particles on the Mechanical Properties of Epoxy Coatings

  • Umit Esra Ozcan
  • Fazliye KaraborkEmail author
  • Sakir Yazman
  • Ahmet Akdemir
Research Article - Mechanical Engineering
  • 14 Downloads

Abstract

Epoxy resins are used as coating materials, but the practical use of epoxy coatings in industries is limited due to their weak mechanical properties. In the present paper, different amounts of silica nanoparticles (\(\hbox {SiO}_{2})\) and graphene nanoplatelets (GNPs) were introduced separately and together into an epoxy coating matrix as reinforcements. Graphene, a newly discovered carbon allotrope, has been found to improve the mechanical properties of the polymer composites in which it is dispersed. Silica particles are also known to improve the mechanical properties of composites. In this study, mechanical, physical and thermal properties of the epoxy coatings are considered as multidimensional by the macro- and microanalyses. The experimental results showed that after the addition of GNPs into the epoxy matrix, the flexibility and impact resistance of the coatings increased by 8.3 and 157.1%, respectively, in relation to neat epoxy. The microhardness increased by 53.8% and penetration depth, which is indicative of the scratch resistance, decreased by 29.7%, with the addition of \(\hbox {SiO}_{2}\)–GNPs nanohybrid. A remarkable synergistic effect was observed between the GNPs and \(\hbox {SiO}_{2}\), which improved the hardness and the scratch resistance of the epoxy coatings.

Keywords

Coatings Nanoparticles Graphene Mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Research Fund of Aksaray University. Project Number: 2016-007.

References

  1. 1.
    Ghasemi-Kahrizsangi, A.; Neshati, J.; Shariatpanahi, H.; Akbarinezhad, E.: Improving the UV degradation resistance of epoxy coatings using modified carbon black nanoparticles. Prog. Org. Coat. 85, 199–207 (2015)CrossRefGoogle Scholar
  2. 2.
    Haeri, S.Z.; Ramezanzadeh, B.; Asghari, M.: A novel fabrication of a high performance SiO2–graphene oxide (GO) nanohybrids: characterization of thermal properties of epoxy nanocomposites filled with SiO2-GO nanohybrids. J. Colloid Interface Sci. 493, 111–122 (2017)CrossRefGoogle Scholar
  3. 3.
    Conradi, M.; Kocijan, A.; Kek-Merl, D.; Zorko, M.; Verpoest, I.: Mechanical and anticorrosion properties of nanosilica-filled epoxy-resin composite coatings. Appl. Surf. Sci. 292, 432–437 (2014)CrossRefGoogle Scholar
  4. 4.
    Boumaza, M.; Khan, R.; Zahrani, S.: An experimental investigation of the effects of nanoparticles on the mechanical properties of epoxy coating. Thin Solid Films 620, 160–164 (2016)CrossRefGoogle Scholar
  5. 5.
    Perera, D.: Effect of pigmentation on organic coating characteristics. Prog. Org. Coat. 50, 247–262 (2004)CrossRefGoogle Scholar
  6. 6.
    Kotnarowska, D.; Przerwa, M.; Szumiata, T.: Resistance to erosive wear of epoxy-polyurethane coating modified with nanofillers. J. Mater. Sci. Res. 3(2) (2014)Google Scholar
  7. 7.
    Avella, M.; Errico, M.E.; Martelli, S.; Martuscelli, E.: Preparation methodologies of polymer matrix nanocomposites. Appl. Organomet. Chem. 15, 434–439 (2001)CrossRefGoogle Scholar
  8. 8.
    Rong, M.Z.; Zhang, M.Q.; Liu, H.; Zeng, H.M.; Wetzel, B.; Friedrich, K.: Microstructure and tribological behavior of polymeric nanocomposites. Ind. Lubr. Tribol. 53, 72–7 (2001)CrossRefGoogle Scholar
  9. 9.
    Wetzel, B.; Haupert, F.; Zhang, M.Q.: Epoxy nanocomposites with high mechanical and tribological performance. Compos. Sci. Technol. 63, 2055–2067 (2003)CrossRefGoogle Scholar
  10. 10.
    Ng, C.B.; Schadler, L.S.; Siegel, R.W.: Synthesis and mechanical properties of TiO2-epoxy nanocomposites. Nanostruct. Mater. 12, 507–510 (1999)CrossRefGoogle Scholar
  11. 11.
    Zhang, M.Q.; Rong, M.Z.; Yu, S.L.; Wetzel, B.; Friedrcih, K.: Improvement of the tribological performance of epoxy by the addition of irradiation grafted nano-inorganic particles. Macromol. Mater. Eng. 287, 111–115 (2002)CrossRefGoogle Scholar
  12. 12.
    Naganuma, T.; Kagawa, Y.: Effect of particle size on the optically transparent nano meter-order glass particle-dispersed epoxy matrix composites. Compos. Sci. Technol. 62, 1187 (2002)CrossRefGoogle Scholar
  13. 13.
    Ramezanzadeh, B.; Attar, M.M.: Characterization of the fracture behavior and viscoelastic properties of epoxy polyamide coating reinforced with nanometer and micrometer sized ZnO particles. Prog. Org. Coat. 71, 242–249 (2011)CrossRefGoogle Scholar
  14. 14.
    Ghanbari, A.; Attar, M.M.: A study on the anticorrosion performance of epoxy nanocomposite coatings containing epoxy-silane treated nano-silica on mild steel substrate. Ind. Eng. Chem. 23, 145–153 (2015)CrossRefGoogle Scholar
  15. 15.
    Yousri, O.M.; Abdellatif, M.H.; Bassioni, G.: Effect of Al\(_{2}\)O\(_{3}\) nanoparticles on the mechanical and physical properties of epoxy composite. Arab. J. Sci. Eng. 43, 1511–1517 (2018)CrossRefGoogle Scholar
  16. 16.
    Monetta, T.; Acquesta, A.; Bellucci, F.: Graphene/epoxy coating as multifunctional material for aircraft structures. Aerospace 2, 423–434 (2015)CrossRefGoogle Scholar
  17. 17.
    Ramezanzadeh, B.; Niroumandrad, S.; Ahmadi, A.; Mahdavian, M.; Mohamadzadeh Moghadam, M.H.: Enhancement of barrier and corrosion protection performance of anepoxy coating through wet transfer of amino functionalized grapheneoxide. Corros. Sci. 103, 283–304 (2016)CrossRefGoogle Scholar
  18. 18.
    Barletta, M.; Vesco, S.; Puopolo, M.; Tagliaferri, V.: Graphene reinforced UV-curable epoxy resins: Design, manufacture and material performance. Prog. Org. Coat. 90, 414–424 (2016)CrossRefGoogle Scholar
  19. 19.
    Chang, C.H.; Huang, T.C.; Peng, C.W.; Yeh, T.C.; Lu, H.I.; Hung, W.I.; Weng, C.J.; Yang, T.I.; Yeh, J.M.: Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 50, 5044–5051 (2012)CrossRefGoogle Scholar
  20. 20.
    Chen, C.; Qiu, S.; Cui, M.; Qin, S.; Yan, G.; Zhao, H.; Wang, L.; Xue, Q.: Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene. Carbon 114, 356–366 (2017)CrossRefGoogle Scholar
  21. 21.
    Dong, R.; Liu, L.: Preparation and properties of acrylic resin coating modified byfunctional graphene oxide. Appl. Surf. Sci. 368, 378–387 (2016)CrossRefGoogle Scholar
  22. 22.
    Ramezanzadeh, B.; Ahmadi, A.; Mahdavian, M.: Enhancement of the corrosion protection performance and cathodicdelamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol-gel based silane composite film filled with functionalized graphene oxide nanosheets. Corros. Sci. 109, 182–205 (2016)CrossRefGoogle Scholar
  23. 23.
    Ma, Y.; Di, H.; Yu, Z.; Liang, L.; Lv, L.; Pan, Y.; Zhang, Y.; Yin, D.: Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research. Appl. Surf. Sci. 360, 936–945 (2016)CrossRefGoogle Scholar
  24. 24.
    Pourhashem, S.; Vaezi, M.R.; Rashidi, A.; Bagherzadeh, M.R.: Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel. Corros. Sci. 115, 78–92 (2017)CrossRefGoogle Scholar
  25. 25.
    Yu, Z.; Di, H.; Ma, Y.; Lv, L.; Pan, Y.; Zhang, C.; He, Y.: Fabrication of graphene oxide-alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings. Appl. Surf. Sci. 351, 986–996 (2015)CrossRefGoogle Scholar
  26. 26.
    Chang, K.C.; Hsu, M.H.; Lu, H.I.; Lai, M.C.; Liu, P.J.; Hsu, C.H.; Ji, W.F.; Chuang, T.L.; Wei, Y.; Yeh, J.M.; Liu, W.R.: Room-temperature cured hydrophobic epoxy/graphene composites as corrosion inhibitör for cold-rolled steel. Carbon 66, 144–153 (2014)CrossRefGoogle Scholar
  27. 27.
    Xia, W.; Xue, H.; Wang, J.; Wang, T.; Song, L.; Guo, H.; Fan, X.; Gong, H.; He, J.: Functionalized graphene serving as free radical scavenger and corrosion protection in gamma-irradiated epoxy composites. Carbon 101, 315–323 (2016)CrossRefGoogle Scholar
  28. 28.
    Longhi, M.; Zini, L.P.; Pistor, V.; Kunst, S.R.; Zattera, A.J.: Evaluation of the mechanic and electrochemical properties of an epoxy coating with addition of different polyhedral oligomeric silsesquioxanes (POSS) applied on substrate of low alloy steel. Mater. Res. 20, 1388–1401 (2017)CrossRefGoogle Scholar
  29. 29.
    Tong, Y.; Bohmb, S.; Song, M.: Graphene based materials and their composites as coatings. Austin J. Nanomed. Nanotech. 1, 1003 (2013)Google Scholar
  30. 30.
    Bastani, S.; Darani, M.K.: Ch. 8. Graphene-based UV-curable nanocomposite coatings. In: Milne, W.I., Cole, M. (eds.) Carbon Nanotechnology, pp. 187–209. One Central Press, Cheshire (2015)Google Scholar
  31. 31.
    Jiang, T.; Kuila, Y.; Kim, N.H.; Ku, B.C.; Lee, J.H.: Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites. Compos. Sci. Technol. 79, 115–125 (2013)CrossRefGoogle Scholar
  32. 32.
    Rahmanian, S.; Suraya, A.R.; Roshanravanc, B.; Othmand, R.N.; Nasser, A.H.; Zahari, R.; Zainudin, E.S.: The influence of multiscale fillers on the rheological and mechanical properties of carbon-nanotube-silica-reinforced epoxy composite. J. Mater. Des. 88, 227–235 (2015)CrossRefGoogle Scholar
  33. 33.
    Barletta, M.; Vesco, S.; Puopolo, M.; Tagliaferri, V.: High performance composite coatings on plastics: UV-curable cycloaliphatic epoxy resins reinforced by graphene or graphene derivatives. Surf. & Coat. Tech. 272, 322–336 (2015)CrossRefGoogle Scholar
  34. 34.
    Spirkova, M.; Slouf, M.; Blahova, O.; Farkacova, T.; Benesova, J.: Submicrometer characterization of surfaces of epoxy-based organic–inorganic nanocomposite coatings. A comparison of AFM study with currently used testing techniques. J. Appl. Polym. Sci. 102, 5763–5774 (2006)CrossRefGoogle Scholar
  35. 35.
    Martin-Gallego, M.; Verdejo, R.; Lopez-Manchado, M.A.; Sangermano, M.: Epoxy-graphene UV-cured nanocomposites. Polymer 52, 4664–4669 (2011)CrossRefGoogle Scholar
  36. 36.
    Shokrieh, M.M.; Hosseinkhani, M.R.; Naimi-Jamal, M.R.; Tourani, H.: Nanoindentation and nanoscratch investigations on graphene-based nanocomposites. Poly. Test. 32, 45–51 (2013)CrossRefGoogle Scholar
  37. 37.
    Sangermano, M.; Messori, M.; Martin Galleco, M.; Rizza, G.; Voit, B.: Scratch resistant tough nanocomposite epoxy coatings based on hyperbranched polyesters. Polymer 50, 5647–5652 (2009)CrossRefGoogle Scholar
  38. 38.
    Sangermano, M.; Malucelli, G.; Amerio, E.; Priola, A.; Billi, E.; Rizza, G.: Photopolymerization of epoxy coatings containing silica nanoparticles. Prog. Org. Coat. 54, 134–138 (2005)CrossRefGoogle Scholar
  39. 39.
    Becker, O.; Varley, R.; Simon, G.: Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins. Polymer 43, 4365–4373 (2002)CrossRefGoogle Scholar
  40. 40.
    Shi, X.; Nguyen, T.A.; Suo, Z.; Liu, Y.; Avci, R.: Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surf. Coat. Techol. 204, 237–245 (2009)CrossRefGoogle Scholar
  41. 41.
    Dhoke, S.K.; Khanna, A.S.: Electrochemical behavior of nano-iron oxide modified alkyd based waterborne coatings. Mater. Chem. Phys. 117, 550–556 (2009)CrossRefGoogle Scholar
  42. 42.
    Guo, Q.; Zhu, P.; Li, G.; Wen, J.; Wang, T.; Lu, D.; Sun, R.; Wong, C.: Study on the effects of interfacial interaction on the rheological and thermal performance of silica nanoparticles reinforced epoxy nanocomposites. Comp. Part B 116, 388–397 (2017)CrossRefGoogle Scholar
  43. 43.
    Zhou, T.; Wang, X.; Liu, X.; Lai, J.: Effect of silane treatment of carboxylic-functionalized multi- walled carbon nanotubes on the thermal properties of epoxy nanocomposites. eXPRESS Polym. Lett. 4, 217–226 (2010)CrossRefGoogle Scholar
  44. 44.
    Khun, N.W.; Rincon Troconis, B.C.; Frankel, G.S.: Effects of carbon nanotube content on adhesion strength and wear and corrosion resistance of epoxy composite coatings on AA2024-T3. Prog. Org. Coat. 77, 72–80 (2014)CrossRefGoogle Scholar
  45. 45.
    Patil, D.P.; Phalak, G.A.; Mhaske, S.T.: Design and synthesis of bio-based UV curable PU acrylate resin from itaconic acid for coating applications. Des. Mono. Poly. 20, 269–282 (2017)CrossRefGoogle Scholar
  46. 46.
    Qi, B.; Lu, S.R.; Xiao, X.E.; Pan, L.L.; Tan, F.Z.; Yu, J.H.: Enhanced thermal and mechanical properties of epoxy composites by mixing thermotropic liquid crystalline epoxy grafted graphene oxide. eXPRESS Polym. Lett. 8(7), 467–479 (2014)CrossRefGoogle Scholar
  47. 47.
    Wei, J.; Saharudin, M.S.; Vo, T.; Inam, F.: Dichlorobenzene: an effective solvent for epoxy/graphene nanocomposites preparation. R. Soc. Open Sci. 4, 170778 (2017)CrossRefGoogle Scholar
  48. 48.
    Naebe, M.; Sandlin, J.; Crouch, I.; Fox, B.: Novel polymer-ceramic composites for protection against ballistic fragments. Poly. Comp. 34, 180–186 (2013)CrossRefGoogle Scholar
  49. 49.
    Silvestre, J.; Silvestre, N.; de Brito, J.: An overview on the improvement of mechanical properties of ceramics nanocomposites. J. Nanomater 2015, 106494 (2015)CrossRefGoogle Scholar
  50. 50.
    Wua, S.; Ladani, R.B.; Zhang, J.; Bafekrpour, E.; Ghorbani, K.; Mouritz, A.P.; Kinloch, A.J.; Wang, C.H.: Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites. Carbon 94, 607–618 (2015)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Graduate School of Natural and Applied ScienceAksaray UniversityAksarayTurkey
  2. 2.Department of Mechanical Engineering, Faculty of EngineeringAksaray UniversityAksarayTurkey
  3. 3.Ilgın Vocational SchoolSelcuk UniversityKonyaTurkey
  4. 4.Department of Aircraft Engineering, Faculty of Aviation and Space SciencesNecmettin Erbakan UniversityKonyaTurkey

Personalised recommendations