Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 4, pp 3831–3848 | Cite as

Service-Level Agreement—Energy Cooperative Quickest Ambulance Routing for Critical Healthcare Services

  • Ashutosh SharmaEmail author
  • Rajiv Kumar
Research Article - Computer Engineering and Computer Science
  • 33 Downloads

Abstract

In this study, the problem of critical ambulance routing scheme, which is a significant variant of the quickest path problem (QPP), was investigated. The proposed QPP incorporates additional factors, such as service-level agreement (SLA) and energy cooperation, to compute the SLA-energy cooperative quickest route (SEQR) for a real-time critical healthcare service vehicle (e.g., ambulance). The continuity of critical healthcare services depends on the performance of the transport system. Therefore, in this research, SLA and energy were proposed as important measures for quantifying the performance. The developed algorithm (SEQR) evaluates the SLA-energy cooperative quickest ambulance route according to the user’s service requirements. The SEQR algorithm was tested with various transport networks. The SLAs and energy variation were quantified through the mean candidate st qualifying service set (QSS) routes for the service, average hop count, and average energy efficiency.

Keywords

Critical healthcare services Smart vehicles Healthcare Quickest route SLA-Energy cooperation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Authors are thankful for the financial grant for this paper from the research project titled, “Reliability Modeling and Optimized Planning of Risk-based Resilient Networks” sponsored by Indo-Polish Program under Grant DST/INT/POL/P-04/2014. We also want to thank Dr. Razi Iqbal and anonymous reviewers for aiding the valuable suggestions to improve the quality of manuscript.

References

  1. 1.
    Barthelemy, M.: Models of network growth. In: Barthelemy, M. (ed.) Morphogenesis of Spatial Networks, Lecture Notes in Morphogenesis pp. 265–286. Springer, Cham (2018)Google Scholar
  2. 2.
    Papadopoulos, K.; Christofides, D.: A fast algorithm for the gas station problem. Inf. Proces. Lett. 131, 55–59 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Vegni, A.M.; Biagi, M.; Cusani, R.: Smart vehicles, technologies and main applications in vehicular ad hoc networks. In: Giordano, L.G., Reggiani, L. (eds.) Vehicular Technologies—Deployment and Applications. InTech, Rijeka (2013)Google Scholar
  4. 4.
    Sharma, A.; Kumar, R.: A framework for pre-computated multi-constrained quickest QoS path algorithm. J. Telecommun. Electron. Comput. Eng. (JTEC) 9, 73–77 (2017)Google Scholar
  5. 5.
    Black, J.: Urban Transport Planning: Theory and Practice. Routledge, London (2018)CrossRefGoogle Scholar
  6. 6.
    Sharma, A.; Kumar, R.: Risk-energy aware service level agreement assessment for computing quickest path in computer networks. Int. J. Reliab. Saf. 13(1–2), 96–124 (2019)CrossRefGoogle Scholar
  7. 7.
    Damania, R.; Russ, J.; Wheeler, D.; Barra, A.F.: The road to growth: measuring the tradeoffs between economic growth and ecological destruction. World Dev. 101, 351–376 (2018)CrossRefGoogle Scholar
  8. 8.
    Sharma, A.; Kumar, R.; Bajaj, R.K.: On Energy-constrained Quickest Path Problem in Green Communication Using Intuitionistic Trapezoidal Fuzzy Numbers. Recent Pat. Compu. Sci. 12, 1–9 (2019).  https://doi.org/10.2174/2213275911666181025125224 CrossRefGoogle Scholar
  9. 9.
    Zheng, K.: Enabling “protocol routing”: revisiting transport layer protocol design in internet communications. IEEE Internet Comput. 21, 52–57 (2017)CrossRefGoogle Scholar
  10. 10.
    Kuppusamy, P.; Kalpana, R.; Rao, P.V.: Optimized traffic control and data processing using IoT. In: Cluster Computing, pp. 1–10 (2018)Google Scholar
  11. 11.
    Ye, H.; Ren, Q.; Hu, X.; Lin, T.; Shi, L.; Zhang, G.; et al.: Modeling energy-related CO\(_2\) emissions from office buildings using general regression neural network. Resour. Conserv. Recycl. 129, 168–174 (2018)CrossRefGoogle Scholar
  12. 12.
    Aktas, E.; Bloemhof, J.; Fransoo, J.C.; Günther, H.-O.; Jammernegg, W.: Green Logistics Solutions. Springer, Berlin (2018)CrossRefGoogle Scholar
  13. 13.
    Andersen, P.H.; Mathews, J.A.; Rask, M.: Integrating private transport into renewable energy policy: the strategy of creating intelligent recharging grids for electric vehicles. Energy Policy 37, 2481–2486 (2009)CrossRefGoogle Scholar
  14. 14.
    Harris-Kojetin, L.; Sengupta, M.; Park-Lee, E.; Valverde, R.: Long-term care services in the United States: 2013 overview. In: Vital & Health Statistics. Series 3, Analytical and Epidemiological Studies, pp. 1–107 (2013)Google Scholar
  15. 15.
    Fikar, C.; Hirsch, P.: Home health care routing and scheduling: a review. Comput. Oper. Res. 77, 86–95 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Duque, P.M.; Castro, M.; Sörensen, K.; Goos, P.: Home care service planning. The case of Landelijke Thuiszorg. Eur. J. Oper. Res. 243, 292–301 (2015)CrossRefzbMATHGoogle Scholar
  17. 17.
    Rais, A.; Viana, A.: Operations research in healthcare: a survey. Int. Trans. Oper. Res. 18, 1–31 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Redjem, R.; Marcon, E.: Operations management in the home care services: a heuristic for the caregivers’ routing problem. Flex. Serv. Manuf. J. 28, 280–303 (2016)CrossRefGoogle Scholar
  19. 19.
    Milburn, A.B.: Operations research applications in home healthcare. In: Hall, R.W. (ed.) Handbook of Healthcare System Scheduling, pp. 281–302. Springer, Berlin (2012)CrossRefGoogle Scholar
  20. 20.
    Cook, D.J.; Duncan, G.; Sprint, G.; Fritz, R.L.: Using smart city technology to make healthcare smarter. Proc. IEEE 106, 708–722 (2018)CrossRefGoogle Scholar
  21. 21.
    Issabakhsh, M.; Hosseini-Motlagh, S.-M.; Pishvaee, M.-S.; Saghafi Nia, M.: A vehicle routing problem for modeling home healthcare: a case study. Int. J. Transp. Eng. 5, 211–228 (2018)Google Scholar
  22. 22.
    Aceto, G.; Persico, V.; Pescapé, A.: The role of information and communication technologies in healthcare: taxonomies, perspectives, and challenges. J. Netw. Comput. Appl. 107, 125–154 (2018)CrossRefGoogle Scholar
  23. 23.
    Kumar, R.; Cholda, P.: A framework for continuity of mission-critical network services. In: 2015 IEEE International Conference on Advanced Networks and Telecommuncations Systems (ANTS), pp. 1–3 (2015)Google Scholar
  24. 24.
    Evans, J.: Optimization Algorithms for Networks and Graphs. Routledge, London (2017)Google Scholar
  25. 25.
    Prakash, A.A.: Pruning algorithm for the least expected travel time path on stochastic and time-dependent networks. Transp. Res. B Methodol. 108, 127–147 (2018)CrossRefGoogle Scholar
  26. 26.
    Issac, P.; Campbell, A.M.: Shortest path problem with arc failure scenarios. EURO J. Transp. Logist. 6, 139–163 (2017)CrossRefGoogle Scholar
  27. 27.
    Huang, Y.; Zhao, L.; Van Woensel, T.; Gross, J.-P.: Time-dependent vehicle routing problem with path flexibility. Transp. Res. B Methodol. 95, 169–195 (2017)CrossRefGoogle Scholar
  28. 28.
    Stefanello, F.; Buriol, L.S.; Hirsch, M.J.; Pardalos, P.M.; Querido, T.; Resende, M.G.; et al.: On the minimization of traffic congestion in road networks with tolls. Ann. Oper. Res. 249, 119–139 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zhang, D.; Chow, C.-Y.; Liu, A.; Zhang, X.; Ding, Q.; Li, Q.: Efficient evaluation of shortest travel-time path queries through spatial mashups. GeoInformatica 22, 3–28 (2018)CrossRefGoogle Scholar
  30. 30.
    Zhao, T.; Huang, J.; Shi, J.; Chen, C.: Route planning for military ground vehicles in road networks under uncertain battlefield environment. J. Adv. Transp. (2018)Google Scholar
  31. 31.
    Ferrucci, F.; Bock, S.; Gendreau, M.: A pro-active real-time control approach for dynamic vehicle routing problems dealing with the delivery of urgent goods. Eur. J. Oper. Res. 225, 130–141 (2013)CrossRefGoogle Scholar
  32. 32.
    Ferrucci, F.: Pro-active Dynamic Vehicle Routing: Real-Time Control and Request-Forecasting Approaches to Improve Customer Service. Springer Science & Business Media, Berlin (2013)CrossRefGoogle Scholar
  33. 33.
    Alshaer, H.; Ernst, T.; de La Fortelle, A.: A QoS architecture for provisioning high quality in intelligent transportation services. In: 2012 IEEE Network Operations and Management Symposium (NOMS), pp. 595-*598 (2012)Google Scholar
  34. 34.
    Alshaer, H.; Ernst, T.; de La Fortelle, A.: A novel distributed QoS control scheme for multi-homed vehicular networks. In: Daher, R. (ed.) Roadside Networks for Vehicular Communications: Architectures, Applications, and Test Fields, pp. 150–168. IGI Global, Hershey (2013)CrossRefGoogle Scholar
  35. 35.
    Ferrucci, F.: Introduction to tour planning: vehicle routing and related problems. In: Pro-active Dynamic Vehicle Routing, pp. 15–79. Springer, Berlin (2013)Google Scholar
  36. 36.
    Liu, Y.; Seah, H.S.; Shou, G.: Constrained energy-efficient routing in time-aware road networks. GeoInformatica 21, 89–117 (2017)CrossRefGoogle Scholar
  37. 37.
    Sever, D.: Routing in Stochastic Networks. Technische Universiteit Eindhoven, Eindhoven (2014)Google Scholar
  38. 38.
    Benabdouallah, M.; Bojji, C.: A review on coverage models applied to emergency location. Int. J. Emerg. Manag. 14, 180–199 (2018)CrossRefGoogle Scholar
  39. 39.
    Boukhanovsky, A.V.; Krzhizhanovskaya, V.V.; Bubak, M.: Urgent Computing for Decision Support in Critical Situations. Elsevier, Amsterdam (2018)CrossRefGoogle Scholar
  40. 40.
    Sharma, A.; Kumar, R.: An optimal routing scheme for critical healthcare HTH services—an IOT perspective. In: 2017 Fourth International Conference on Image Information Processing (ICIIP), pp. 1–5 (2017)Google Scholar
  41. 41.
    Priyan, M.; Devi, G.U.: Energy efficient node selection algorithm based on node performance index and random waypoint mobility model in internet of vehicles. In: Cluster Computing, pp. 1–15 (2017)Google Scholar
  42. 42.
    Sawand, A.; Djahel, S.; Zhang, Z.; Nait-Abdesselam, F.: Toward energy-efficient and trustworthy eHealth monitoring system. China Commun. 12, 46–65 (2015)CrossRefGoogle Scholar
  43. 43.
    Porter, M.E.; Kramer, M.R.: The big idea: Creating shared value. Harvard Bus. Rev. 89(1), 1–12 (2011)Google Scholar
  44. 44.
    Elbouzekri, A.; Elhassania, M.; Alaoui, A.E.H.: A hybrid ant colony system for green capacitated vehicle routing problem in sustainbale transport. J. Theor. Appl. Inf. Technol. 54, 1–11 (2013)Google Scholar
  45. 45.
    Demir, E.; Bektaş, T.; Laporte, G.: A review of recent research on green road freight transportation. Eur. J. Oper. Res. 237, 775–793 (2014)CrossRefzbMATHGoogle Scholar
  46. 46.
    Ćirović, G.; Pamučar, D.; Božanić, D.: Green logistic vehicle routing problem: routing light delivery vehicles in urban areas using a neuro-fuzzy model. Expert Syst. Appl. 41, 4245–4258 (2014)CrossRefGoogle Scholar
  47. 47.
    Soysal, M.; Çimen, M.; Demir, E.: On the mathematical modeling of green one-to-one pickup and delivery problem with road segmentation. J. Clean. Prod. 174, 1664–1678 (2018)CrossRefGoogle Scholar
  48. 48.
    Yang, X.; Zeng, Z.; Wang, R.; Sun, X.: Bi-objective flexible job-shop scheduling problem considering energy consumption under stochastic processing times. PloS One 11, e0167427 (2016)CrossRefGoogle Scholar
  49. 49.
    Wu, F.; Sioshansi, R.: A stochastic flow-capturing model to optimize the location of fast-charging stations with uncertain electric vehicle flows. Transp. Res. D Transp. Environ. 53, 354–376 (2017)CrossRefGoogle Scholar
  50. 50.
    Butt, T.A.; Iqbal, R.; Shah, S.C.; Umar, T.: Social internet of vehicles: architecture and enabling technologies. Comput. Electr. Eng. 69, 68–84 (2018)CrossRefGoogle Scholar
  51. 51.
    Zeng, W.; Church, R.L.: Finding shortest paths on real road networks: the case for A. Int. J. Geogr. Inf. Sci. 23, 531–543 (2009)CrossRefGoogle Scholar
  52. 52.
    Ahuja, R.K.: Network flows: theory, algorithms, and applications. Pearson Education (2017)Google Scholar
  53. 53.
    Zhan, F.B.; Noon, C.E.: Shortest path algorithms: an evaluation using real road networks. Transp. Sci. 32, 65–73 (1998)CrossRefzbMATHGoogle Scholar
  54. 54.
    Chen, B.Y.; Lam, W.H.; Sumalee, A.; Li, Q.; Shao, H.; Fang, Z.: Finding reliable shortest paths in road networks under uncertainty. Netw. Spatial Econ. 13, 123–148 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Chen, Y.; Chin, Y.: The quickest path problem. Comput. Oper. Res. 17, 153–161 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Gen-Huey, C.; Yung-Chen, H.: Algorithms for the constrained quickest path problem and the enumeration of quickest paths. Comput. Oper. Res. 21, 113–118 (1994)CrossRefzbMATHGoogle Scholar
  57. 57.
    Chen, G.-H.; Hung, Y.-C.: On the quickest path problem. Inf. Process. Lett. 46, 125–128 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Lin, Y.-K.: Optimal pair of minimal paths under both time and budget constraints. IEEE Trans. Syst. Man Cybern. A Syst. Humans 39, 619–625 (2009)CrossRefGoogle Scholar
  59. 59.
    Fredman, M.L.; Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM (JACM) 34, 596–615 (1987)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Bolot, J.-C.: End-to-end packet delay and loss behavior in the Internet. In: ACM SIGCOMM Computer Communication Review, pp. 289–298 (1993)Google Scholar
  61. 61.
    Chen, S.; Song, M.; Sahni, S.: Two techniques for fast computation of constrained shortest paths. IEEE/ACM Trans. Netw. (TON) 16, 105–115 (2008)CrossRefGoogle Scholar
  62. 62.
    Chen, S.; Song, M.; Sahni, S.: Two techniques for fast computation of constrained shortest paths. In: Global Telecommunications Conference, 2004. GLOBECOM’04. IEEE, pp. 1348–1352 (2004)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2019

Authors and Affiliations

  1. 1.Department of Electronics and CommunicationJaypee University of Information TechnologyWaknaghat, SolanIndia

Personalised recommendations