Antibacterial Activity of Silver Nanoparticles Isolated from Cow’s Milk, Hen’s Egg White and Lysozyme: A Comparative Study

  • Akshata G. Athreya
  • M. Ismail ShareefEmail author
  • S. M. Gopinath
Research Article - Biological Sciences


The aim of the present study is to evaluate the antibacterial activity of biosynthesized silver nanoparticles (AgNPs) with the dietary, nontoxic, eco-friendly biological materials such as raw and pasteurized cow’s milk, egg white and lysozyme. The chosen organisms are clinically important, and hence its in vitro evaluation gains significance in the field of medicine. The AgNPs were characterized by UV–visible spectroscopy which revealed surface plasmon absorbance peaks, ranging between 400 and 450 nm. Fourier transform infrared spectroscopy showed the presence of characteristic C=O and O–H bonds. Transmission electron microscopy revealed spherical particles ranging between 20 and 200 nm. Scanning electron microscopy–energy-dispersive spectroscopy revealed peak at 3 keV confirming the presence of AgNPs. SDS-PAGE analysis further ascertained this with the absence of some protein bands in AgNPs solution as against their respective controls which could indicate its role during the synthesis. The comparative antibacterial activity was determined by well diffusion method. Effective inhibition zones obtained by AgNPs synthesized from the pasteurized milk were 12 mm ± 0.7 against Escherichia coli DH5 \(\upalpha \) and Bacillus subtilis, 14.5 mm ± 0.5 against Pseudomonas alcaligenes and Staphylococcus aureus, 15 mm ± 0.7 against Bacillus cereus. The percentage inhibition displayed by AgNPs from pasteurized cow’s milk was 48%, 58%, 65.9%, 85.7% and 68.2% against the growth of E. coli DH5\(\upalpha \), P. alcaligenes, S. aureus, B. subtilis and B. cereus, respectively, which was significant when compared to the inhibition profiles of AgNPs obtained from other sources such as raw milk, lysozyme and egg white.


Silver nanoparticles (AgNPs) Characterization SDS-PAGE Antibacterial Egg white Lysozyme Cow’s milk 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors of this study would like to acknowledge V.T.U Research Centre, Muddenahalli, Bangalore, and STIC, Cochin, for providing facility for the characterization works and Aristogene Biosciences Pvt. Ltd. for providing the bacterial strains.


  1. 1.
    Zhang, X.-F.; Liu, Z.-G.; Shen, W.; Gurunathan, S.; Nanoparticles, S.: Synthesis, characterization, properties, applications and therapeutic approaches. Int. J. Mol. Sci. 17, 1534 (2016). CrossRefGoogle Scholar
  2. 2.
    Kalimuthu, K.; Suresh Babu, R.; Venkataraman, D.; Bilal, M.; Gurunathan, S.: Biosynthesis of silver nanocrystals by Bacillus licheniformis. Coll. Surf. B Biointerfaces 65(1), 150–153 (2008). CrossRefGoogle Scholar
  3. 3.
    Nanda, A.; Saravanan, M.: Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 5(4), 452–456 (2009)CrossRefGoogle Scholar
  4. 4.
    Basavaraja, S.; Balaji, S.D.; Lagashetty, A.; Rajasab, A.H.; Venkataraman, A.: Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater. Res. Bull. 43(5), 1164–1170 (2008)CrossRefGoogle Scholar
  5. 5.
    Bhainsa, K.C.; D’Souza, S.F.: Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Coll. Surf. B Biointerfaces 47(2), 160–164 (2006)CrossRefGoogle Scholar
  6. 6.
    El-Rafiea, H.M.; El-Rafie, M.H.; Zahran, M.K.: Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydr. Polym. 96, 403–410 (2013)CrossRefGoogle Scholar
  7. 7.
    Srikar, S.K.; Giri, D.D.; Pal, D.B.; Mishra, P.K.; Upadhyay, S.N.: Green synthesis of silver nanoparticles: a review. Green Sustain. Chem. 6, 34–56 (2016)CrossRefGoogle Scholar
  8. 8.
    Willner,; Baron, R.; Willner, B.: Growing metal nanoparticles by enzymes. J. Adv. Mater. 18, 1109–1120 (2006)CrossRefGoogle Scholar
  9. 9.
    Ashraf, S.; Chatha, M.A.; Ejaz, W.; Janjua, H.A.; Hussain, I.: Lysozyme-coated silver nanoparticles for differentiating bacterial strains on the basis of antibacterial activity. Res. Lett. 9, 565 (2014)Google Scholar
  10. 10.
    Manikprabhu, D.; Lingappa, K.: Antibacterial activity of silver nanoparticles against methicillin-resistant Staphylococcus aureus synthesized using model Streptomyces sp. pigment by photo-irradiation method. J. Pharm. Res. 6, 255–260 (2013)Google Scholar
  11. 11.
    Lee, K.-J.; Park, S.-H.; Govarthanan, M.; Hwang, P.-H.; Seo, Y.-S.; Cho, M.; Lee, W.-H.; Lee, J.-Y.: Seralathan Kamala-Kannan-synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Mater. Lett. 105, 128–131 (2013)CrossRefGoogle Scholar
  12. 12.
    Renquan, L.; Yang, D.; Cui, D.; Wang, Z.; Guo, L.: Egg white-mediated green synthesis of silver nanoparticles with excellent biocompatibility and enhanced radiation effects on cancer cells. Int. J. Nanomed. 7, 2101–2107 (2012)Google Scholar
  13. 13.
    Bahrami-Teimoori, B.; Nikparast, Y.; Hojatianfar, M.; Akhlaghi, M.: Reza Ghorbani & Hamid Reza Pourianfar, characterisation and antifungal activity of silver nanoparticles biologically synthesised by Amaranthus retroflexus leaf extract. J. Exp. Nanosci. 12(1), 129–139 (2017). CrossRefGoogle Scholar
  14. 14.
    Khan, Y.; Numan, M.; Ali, M.; Khali, A.T.; Ali, T.; et al.: Bio-synthesized silver nanoparticles using different plant extracts as anti-cancer agent. J. Nanomed. Biother. Discov. (2017).
  15. 15.
    Zhang, M.; Zhang, K.; Gusseme, B.D.; Verstraete, W.; Field, R.: The antibacterial and anti-biofouling performance of biogenic silver nanoparticles by Lactobacillus fermentum. Biofouling J. Bioadhes. Biofilm Res. 30, 347–357 (2014). CrossRefGoogle Scholar
  16. 16.
    Sudha, A.; Jeyakanthan, J.; Srinivasan, P.: Green synthesis of silver nanoparticles using Lippia nodiflora aerial extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Resour. Efficient Technol. 3, 506–515 (2017)CrossRefGoogle Scholar
  17. 17.
    Das, B.; Dash, S.K.; Mandal, D.; Ghosh, T.; Chattopadhyay, S.; Tripathy, S.; Das, S.; Dey, S.K.; Das, D.; Roy, S.: Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab. J. Chem. 10, 862–876 (2015)CrossRefGoogle Scholar
  18. 18.
    Hegazi, A.; Hamdy Elshazly, E.; Abdou, A.M.; Abd Allah, F.; Eman, H.; Abdel-Rahman, : Potential antibacterial properties of silver nanoparticles conjugated with cow and camel milks. Glob. Vet. 12(6), 745–749 (2014)Google Scholar
  19. 19.
    Devaraj, P.; Kumari, P.; Aarti, C.; Arun, R.: Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF-7 cell line. J. Nanotechnol. 2013, 5 (2013). CrossRefGoogle Scholar
  20. 20.
    Vijaykumar, M.; Priya, K.; Nancy, F.T.; Noorlidaha, A.: Ahmed, ABA biosynthesis, characterization and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind. Crops Prod. 41, 235–240 (2013)CrossRefGoogle Scholar
  21. 21.
    Jagtap, U.B.; Bapat, V.A.: Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind. Crops Prod. 46, 132–137 (2013)CrossRefGoogle Scholar
  22. 22.
    Naheed, A.; Seema, S.; Singh, V.N.; Shamsi, S.F.; Anjum, F.; Meh, B.R.: Biosynthesis of silver nanoparticles from desmodium triflorum: a novel approach towards weed utilization. Biotechnol. Res. Int. 2011, 8 (2011).
  23. 23.
    Anandalakshmi, K.; Venugobal, J.; Ramasamy, V.: Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci. 6, 399–408 (2016)CrossRefGoogle Scholar
  24. 24.
    Govarthanan, M.; Selvankumar, T.; Manoharan, K.; Rathika, R.; Shanthi, K.; Lee, K.-J.; Cho, M.; Kamala-Kannan, S.; Oh, B.-T.: Biosynthesis and characterization of silver nanoparticles using panchakavya, an Indian traditional farming formulating agent. Int. J. Nanomed. 9, 1593–1599 (2014)CrossRefGoogle Scholar
  25. 25.
    Navin, J.; Arpit, B.; Sonali, M.; Tarafdar, J.C.; Jitendra, P.: Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3, 635–641 (2011)CrossRefGoogle Scholar
  26. 26.
    Supriyo, C.; Arpita, B.; Surekha, K.: Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria. Nanoscale Res. Lett. 9(365), 1–11 (2014)Google Scholar
  27. 27.
    Kethirabalan, C.; Gurusamy, A.: Bioengineered silver nanobowls using Trichoderma viride and its antibacterial activity against gram-positive and gram-negative bacteria. J. Nanostruct. Chem. 3(9), 1–7 (2013)Google Scholar
  28. 28.
    Jie, Z.; Ying, Z.; Bin-song, W.; Maria, S.: Biosynthesis silver nanoparticles using Bacillus Amyloliquefaciens Zxw01 and research on synthesis mechanism. Mater. Sci. Forum 852, 437–442 (2015)Google Scholar
  29. 29.
    Abergel, C.; Monchois, V.; Byrne, D.; Chenivesse, S.; Lembo, F.: Structure and evolution of the Ivy protein family, unexpected lysozyme inhibitors in Gram-negative bacteria. Proc. Natl. Acad. Sci. U. S. A. 104(15), 6394–6399 (2007)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Akshata G. Athreya
    • 1
  • M. Ismail Shareef
    • 1
    Email author
  • S. M. Gopinath
    • 1
  1. 1.R & D Centre, Department of BiotechnologyAcharya Institute of TechnologyBangaloreIndia

Personalised recommendations