Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 5, pp 4993–5008 | Cite as

A Concept for Automated Construction Progress Monitoring: Technologies Adoption for Benchmarking Project Performance Control

  • Sepehr AlizadehsalehiEmail author
  • Ibrahim Yitmen
Research Article - Civil Engineering

Abstract

Despite recent advances in technologies and equipment for automated progress monitoring, most construction companies worldwide do not utilize them for their projects. This can be due to many reasons, such as the high cost of technologies and equipment, need for skilled staff, and lack of sufficient information about the impact of automated progress monitoring on project performance control. The aim of the present research is to investigate the impact of automated progress monitoring on key project performance indicators: time, cost, and quality. This study prepared based on a survey of contracting and engineering consulting firms in North America, Europe, and the Middle East. In the first part of this study, structural equation modeling is used to identify the relations of different factors of project progress monitoring (both conventional and automated) with project performance control. In the second part of the study, a benefit analysis is evaluated based on the sixteen (16) journal and international conference papers and also twenty-four (24) international construction projects for which automated progress monitoring was employed. The research findings validate the positive impact of real-time, accurate, and cost-effective automated progress monitoring environments and reveal how automated progress monitoring affects construction project success.

Keywords

Automated progress monitoring Project performance control Construction projects Structural equation modeling Benefit analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank all the participating firms, construction managers, project managers, civil engineers, and respondents who participated in this study.

References

  1. 1.
    Golparvar-Fard, M.; Bohn, J.; Teizer, J.; Savarese, S.; Peña-Mora, F.: Evaluation of image-based modeling and laser scanning accuracy for emerging automated performance monitoring techniques. Autom. Constr. 20(8), 1143–1155 (2011)Google Scholar
  2. 2.
    Yang, J.; Park, M.-W.; Vela, P.A.; Golparvar-Fard, M.: Construction performance monitoring via still images, time-lapse photos, and video streams: now, tomorrow, and the future. Adv. Eng. Inf. 29(2), 211–224 (2015)Google Scholar
  3. 3.
    Hwang, B.-G.; Zhao, X.; Ng, S.Y.: Identifying the critical factors affecting schedule performance of public housing projects. Habitat Int. 38, 214–221 (2013)Google Scholar
  4. 4.
    Kim, C.; Son, H.; Kim, C.: Automated construction progress measurement using a 4D building information model and 3D data. Autom. Constr. 31, 75–82 (2013)Google Scholar
  5. 5.
    Bosché, F.; Ahmed, M.; Turkan, Y.; Haas, C.T.; Haas, R.: The value of integrating Scan-to-BIM and Scan-vs-BIM techniques for construction monitoring using laser scanning and BIM: The case of cylindrical MEP components. Autom. Constr. 49, 201–213 (2015)Google Scholar
  6. 6.
    Son, H.; Bosché, F.; Kim, C.: As-built data acquisition and its use in production monitoring and automated layout of civil infrastructure: A survey. Adv. Eng. Inf. 29(2), 172–183 (2015)Google Scholar
  7. 7.
    Zhang, C.; Arditi, D.: Automated progress control using laser scanning technology. Autom. Constr. 36, 108–116 (2013)Google Scholar
  8. 8.
    Kim, C.; Son, H.; Kim, C.: Fully automated registration of 3D data to a 3D CAD model for project progress monitoring. Autom. Constr. 35, 587–594 (2013)Google Scholar
  9. 9.
    Maalek, R.; Ruwanpura, J.; Ranaweera, K.: Evaluation of the state-of-the-art automated construction progress monitoring and control systems, In: Construction Research Congress 2014: Construction in a Global Network, pp. 1023–1032 (2014)Google Scholar
  10. 10.
    Braun, A.; Borrmann, A.; Tuttas, S.; Stilla, U.: Towards automated construction progress monitoring using BIM-based point cloud processing, eWork and eBusiness in Architecture. Engineering and Construction: ECPPM 2014, 101 (2014)Google Scholar
  11. 11.
    Navon, R.; Sacks, R.: Assessing research issues in automated project performance control (APPC). Autom. Constr. 16(4), 474–484 (2007)Google Scholar
  12. 12.
    Fard, M.G.; Peña-Mora, F.: Application of visualization techniques for construction progress monitoring. Computing in Civil Engineering 2007, 216–223 (2007)Google Scholar
  13. 13.
    Meredith, J.R.; Mantel Jr., S.J.: Project management: a managerial approach. Wiley, Hoboken (2011)Google Scholar
  14. 14.
    Song, K.; Pollalis, S.N.; Pena-Mora, F.: Project dashboard: Concurrent visual representation method of project metrics on 3D building models. Computing in Civil Engineering 2005, 1–12 (2005)Google Scholar
  15. 15.
    Kerzner, H.; Kerzner, H.R.: Project management: a systems approach to planning, scheduling, and controlling. Wiley, Hoboken (2017)zbMATHGoogle Scholar
  16. 16.
    Son, H.; Kim, C.: 3D structural component recognition and modeling method using color and 3D data for construction progress monitoring. Autom. Constr. 19(7), 844–854 (2010)Google Scholar
  17. 17.
    Isaac, S.; Navon, R.: Can project monitoring and control be fully automated? Constr. Manag. Econ. 32(6), 495–505 (2014)Google Scholar
  18. 18.
    Golparvar-Fard, M.; Peña-Mora, F.; Savarese, S.: D4AR-a 4-dimensional augmented reality model for automating construction progress monitoring data collection, processing and communication. J. Inf. Technol. Constr. 14(13), 129–153 (2009)Google Scholar
  19. 19.
    Alizadehsalehi, S.; Koseoglu, O.; Celikag, M.: Integration of building information modeling (bim) and laser scanning in construction industry. AEI 2015, 163–174 (2015)Google Scholar
  20. 20.
    Turkan, Y.; Bosche, F.; Haas, C.T.; Haas, R.: Automated progress tracking using 4D schedule and 3D sensing technologies. Autom. Constr. 22, 414–421 (2012)Google Scholar
  21. 21.
    Alizadehsalehi, S.; Yitmen, I.; Celik, T.; Arditi, D.: The effectiveness of an integrated BIM/UAV model in managing safety on construction sites. Int. J. Occup. Saf. Ergon. (2018).  https://doi.org/10.1080/10803548.2018.1504487
  22. 22.
    Alizadehsalehi, S.; Yitmen, I.: The impact of field data capturing technologies on automated construction project progress monitoring. Proc. Eng. 161, 97–103 (2016)Google Scholar
  23. 23.
    Pučko, Z.; Šuman, N.; Rebolj, D.: Automated continuous construction progress monitoring using multiple workplace real time 3D scans. Adv. Eng. Inf. 38, 27–40 (2018)Google Scholar
  24. 24.
    Asadi, K.; Han, K.: Real-time image-to-BIM registration using perspective Alignment for Automated Construction Monitoring, In: Construction Research Congress. pp. 388–397 (2018)Google Scholar
  25. 25.
    Han, K.K.; Golparvar-Fard, M.: Potential of big visual data and building information modeling for construction performance analytics: An exploratory study. Autom. Constr. 73, 184–198 (2017)Google Scholar
  26. 26.
    Tuttas, S.; Braun, A.; Borrmann, A.; Stilla, U.: Evaluation of acquisition strategies for image-based construction site monitoring. Int. Arch. Photogr. Remote Sen. Spatial Inf. Sci. 41 (2016)Google Scholar
  27. 27.
    Behnam, A.; Wickramasinghe, D.C.; Ghaffar, M.A.A.; Vu, T.T.; Tang, Y.H.; Isa, H.B.M.: Automated progress monitoring system for linear infrastructure projects using satellite remote sensing. Autom. Constr. 68, 114–127 (2016)Google Scholar
  28. 28.
    Irizarry, J.; Costa, D.B.: Exploratory study of potential applications of unmanned aerial systems for construction management tasks. J. Manag. Eng. 32(3), 05016001 (2016)Google Scholar
  29. 29.
    Teizer, J.: Status quo and open challenges in vision-based sensing and tracking of temporary resources on infrastructure construction sites. Adv. Eng. Inf. 29(2), 225–238 (2015)MathSciNetGoogle Scholar
  30. 30.
    Han, K.K.; Golparvar-Fard, M.: Appearance-based material classification for monitoring of operation-level construction progress using 4D BIM and site photologs. Autom. Constr. 53, 44–57 (2015)Google Scholar
  31. 31.
    Han, K.K.; Cline, D.; Golparvar-Fard, M.: Formalized knowledge of construction sequencing for visual monitoring of work-in-progress via incomplete point clouds and low-LoD 4D BIMs. Adv. Eng. Inf. 29(4), 889–901 (2015)Google Scholar
  32. 32.
    Braun, A.; Tuttas, S.; Borrmann, A.; Stilla, U.: A concept for automated construction progress monitoring using BIM-based geometric constraints and photogrammetric point clouds. J. Inf. Technol. Constr. (ITcon) 20(5), 68–79 (2015)Google Scholar
  33. 33.
    Lin, J.J.; Han, K.K.; Golparvar-Fard, M.: A framework for model-driven acquisition and analytics of visual data using UAVs for automated construction progress monitoring. Comput. Civ. Eng. 2015, 156–164 (2015)Google Scholar
  34. 34.
    Shahi, A.; Safa, M.; Haas, C.T.; West, J.S.: Data fusion process management for automated construction progress estimation. J. Comput. Civ. Eng. 29(6), 04014098 (2014)Google Scholar
  35. 35.
    Tuttas, S.; Braun, A.; Borrmann, A.; Stilla, U.: Comparision of photogrammetric point clouds with bim building elements for construction progress monitoring. Int. Arch. Photogr. Remote Sens. Spatial Inf. Sci. XL-3, 341–345 (2014)Google Scholar
  36. 36.
    Dimitrov, A.; Golparvar-Fard, M.: Vision-based material recognition for automated monitoring of construction progress and generating building information modeling from unordered site image collections. Adv. Eng. Inf. 28(1), 37–49 (2014)Google Scholar
  37. 37.
    Han, K.K.; Golparvar-Fard, M.: Multi-sample image-based material recognition and formalized sequencing knowledge for operation-level construction progress monitoring. Comput. Civ. Build. Eng. 2014, 364–372 (2014)Google Scholar
  38. 38.
    Han, K.K.; Golparvar-Fard, M.: Automated monitoring of operation-level construction progress using 4D BIM and daily site photologs. In: Construction Research Congress 2014: Construction in a Global Network, pp. 1033–1042 (2014)Google Scholar
  39. 39.
    Bosché, F.; Guillemet, A.; Turkan, Y.; Haas, C.T.; Haas, R.: Tracking the built status of MEP works: Assessing the value of a Scan-vs-BIM system. J. Comput. Civ. Eng. 28(4), 05014004 (2013)Google Scholar
  40. 40.
    Turkan, Y.; Bosché, F.; Haas, C.T.; Haas, R.: Tracking secondary and temporary concrete construction objects using 3D imaging technologies. Comput. Civ. Eng. 2013, 749–756 (2013)Google Scholar
  41. 41.
    Shahi, A.; Cardona, J.M.; Haas, C.T.; West, J.S.; Caldwell, G.L.: Activity-based data fusion for automated progress tracking of construction projects. In: Construction Research Congress 2012: Construction Challenges in a Flat World, pp. 838–847 (2012)Google Scholar
  42. 42.
    Roh, S.; Aziz, Z.; Peña-Mora, F.: An object-based 3D walk-through model for interior construction progress monitoring. Autom. Constr. 20(1), 66–75 (2011)Google Scholar
  43. 43.
    Golparvar-Fard, M.; Savarese, S.; Peña-Mora, F.: Automated model-based recognition of progress using daily construction photographs and IFC-based 4D models. In: Construction Research Congress 2010: Innovation for Reshaping Construction Practice, pp. 51–60 (2010)Google Scholar
  44. 44.
    Motamedi, A.; Hammad, A.: RFID-assisted lifecycle management of building components using BIM data, In: Proceedings of the 26th International Symposium on Automation and Robotics in Construction, pp. 109–116 (2009)Google Scholar
  45. 45.
    Golparvar-Fard, M.; Peña-Mora, F.; Arboleda, C.A.; Lee, S.: Visualization of construction progress monitoring with 4D simulation model overlaid on time-lapsed photographs. J. Comput. Civ. Eng. 23(6), 391–404 (2009)Google Scholar
  46. 46.
    Hajian, H.; Becerik-Gerber, B.: A research outlook for real-time project information management by integrating advanced field data acquisition systems and building information modeling. Comput. Civ. Eng. 2009, 83–94 (2009)Google Scholar
  47. 47.
    Ibrahim, Y.; Lukins, T.C.; Zhang, X.; Trucco, E.; Kaka, A.: Towards automated progress assessment of workpackage components in construction projects using computer vision. Adv. Eng. Inf. 23(1), 93–103 (2009)Google Scholar
  48. 48.
    Rebolj, D.; Babič, N.Č.; Magdič, A.; Podbreznik, P.; Pšunder, M.: Automated construction activity monitoring system. Adv. Eng. Inf. 22(4), 493–503 (2008)Google Scholar
  49. 49.
    Hammad, A.; Motamedi, A.: Framework for lifecycle status tracking and visualization of constructed facility components. In: 7th International Conference on Construction Applications of Virtual Reality, pp. 224–232 (2007)Google Scholar
  50. 50.
    Chan, A.P.; Scott, D.; Chan, A.P.: Factors affecting the success of a construction project. J. Constr. Eng. Manag. 130(1), 153–155 (2004)Google Scholar
  51. 51.
    Todorović, M.L.; Petrović, D.Č.; Mihić, M.M.; Obradović, V.L.; Bushuyev, S.D.: Project success analysis framework: A knowledge-based approach in project management. Int. J. Proj. Manag. 33(4), 772–783 (2015)Google Scholar
  52. 52.
    Pinto, J.K.; Winch, G.: The unsettling of “settled science:” the past and future of the management of projects. Int. J. Proj. Manag. 34(2), 237–245 (2016)Google Scholar
  53. 53.
    Fahri, J.; Biesenthal, C.; Pollack, J.; Sankaran, S.: Understanding megaproject success beyond the project close-out stage. Constr. Econ. Build. 15, 48–58 (2015)Google Scholar
  54. 54.
    Sanvido, V.; Grobler, F.; Parfitt, K.; Guvenis, M.; Coyle, M.: Critical success factors for construction projects. J. Constr. Eng. Manag. 118(1), 94–111 (1992)Google Scholar
  55. 55.
    Atkinson, R.: Project management: cost, time and quality, two best guesses and a phenomenon, its time to accept other success criteria. Int. J. Proj. Manag. 17(6), 337–342 (1999)Google Scholar
  56. 56.
    Guide, A.: Project Management Body of Knowledge (PMBOK\({\textregistered }\) GUIDE), In: Project Management Institute (2001)Google Scholar
  57. 57.
    Salehi, S.A.; Yitmen, İ.: Modeling and analysis of the impact of BIM-based field data capturing technologies on automated construction progress monitoring. Int. J. Civ. Eng. 16(12), 1669–1685 (2018)Google Scholar
  58. 58.
    Navon, R.: Automated project performance control of construction projects. Autom. Constr. 14(4), 467–476 (2005)Google Scholar
  59. 59.
    Too, E.G.; Weaver, P.: The management of project management: A conceptual framework for project governance. Int. J. Proj. Manag. 32(8), 1382–1394 (2014)Google Scholar
  60. 60.
    Kusters, J.: The value and necessity of the project management plan: the pre-award phase of BVP projects from the vendor’s perspective. pp. 1–16 (2016)Google Scholar
  61. 61.
    Wang, K.-C.; Wang, W.-C.; Wang, H.-H.; Hsu, P.-Y.; Wu, W.-H.; Kung, C.-J.: Applying building information modeling to integrate schedule and cost for establishing construction progress curves. Autom. Constr. 72, 397–410 (2016)Google Scholar
  62. 62.
    Wang, X.; Yung, P.; Luo, H.; Truijens, M.: An innovative method for project control in LNG project through 5D CAD: a case study. Autom. Constr. 45, 126–135 (2014)Google Scholar
  63. 63.
    British Standards Institution. BS 6079–1:2010—Project Management: Principles and Guidelines for the Management of Projects. British Standards Institution, London (2010)Google Scholar
  64. 64.
    Alotaibi, N.O.; Sutrisna, M.; Chong, H.Y.: Guidelines of using project management tools and techniques to mitigate factors causing delays in public construction projects in kingdom of Saudi Arabia. J. Eng. Proj. Prod. Manag. 6(2), 90–103 (2016)Google Scholar
  65. 65.
    Hazır, Ö.: A review of analytical models, approaches and decision support tools in project monitoring and control. Int. J. Proj. Manag. 33(4), 808–815 (2015)Google Scholar
  66. 66.
    Aliverdi, R.; Naeni, L.M.; Salehipour, A.: Monitoring project duration and cost in a construction project by applying statistical quality control charts. Int. J. Proj. Manag. 31(3), 411–423 (2013)Google Scholar
  67. 67.
    Issa, R.R.; Olbina, S.: Building Information Modeling: Applications and Practices. American Society of Civil Engineers, Reston (2015)Google Scholar
  68. 68.
    Ham, Y.; Han, K.K.; Lin, J.J.; Golparvar-Fard, M.: Visual monitoring of civil infrastructure systems via camera-equipped Unmanned Aerial Vehicles (UAVs): a review of related works. Vis. Eng. 4(1), 1 (2016)Google Scholar
  69. 69.
    Ahsan, K.; Gunawan, I.: Analysis of cost and schedule performance of international development projects. Int J. Proj. Manag. 28(1), 68–78 (2010)Google Scholar
  70. 70.
    Kim, M.-K.; Cheng, J.C.; Sohn, H.; Chang, C.-C.: A framework for dimensional and surface quality assessment of precast concrete elements using BIM and 3D laser scanning. Autom. Constr. 49, 225–238 (2015)Google Scholar
  71. 71.
    Zhang, X.; et al.: Automating progress measurement of construction projects. Autom. Constr. 18(3), 294–301 (2009)Google Scholar
  72. 72.
    Azhar, S.; Nadeem, A.; Mok, J.Y.; Leung, B.H.: Building information modeling (BIM): a new paradigm for visual interactive modeling and simulation for construction projects. In: Proceedings of First International Conference on Construction in Developing Countries vol. 1, pp. 435–446 (2008)Google Scholar
  73. 73.
    Park, J.; Cai, H.: WBS-based dynamic multi-dimensional BIM database for total construction as-built documentation. Autom. Constr. 77, 15–23 (2017)Google Scholar
  74. 74.
    Golparvar-Fard, M.; Peña-Mora, F.; Savarese, S.: Automated progress monitoring using unordered daily construction photographs and IFC-based building information models. J. Comput. Civ. Eng. 29(1), 04014025 (2012)Google Scholar
  75. 75.
    Son, H.; Kim, C.; Kwon Cho, Y.: Automated schedule updates using as-built data and a 4D building information model. J. Manag. Eng. 33(4), 04017012 (2017)Google Scholar
  76. 76.
    He, Q.; Wang, G.; Luo, L.; Shi, Q.; Xie, J.; Meng, X.: Mapping the managerial areas of Building Information Modeling (BIM) using scientometric analysis. Int. J. Proj. Manag. 35(4), 670–685 (2017)Google Scholar
  77. 77.
    Heagney, J.: Fundamentals of Project Management. Amacom, New York (2016)Google Scholar
  78. 78.
    Wang, S.; Tang, W.; Li, Y.: Relationship between owners’ capabilities and project performance on development of hydropower projects in China. J. Constr. Eng. Manag. 139(9), 1168–1178 (2013)Google Scholar
  79. 79.
    Matthews, J.; Love, P.E.; Heinemann, S.; Chandler, R.; Rumsey, C.; Olatunj, O.: Real time progress management: Re-engineering processes for cloud-based BIM in construction. Autom. Constr. 58, 38–47 (2015)Google Scholar
  80. 80.
    Duffield, S.; Whitty, S.J.: Developing a systemic lessons learned knowledge model for organisational learning through projects. Int. J. Proj. Manag. 33(2), 311–324 (2015)Google Scholar
  81. 81.
    Martinelli, R.J.; Milosevic, D.Z.: Project Management Toolbox: Tools and Techniques for the Practicing Project Manager. Wiley, Hoboken (2016)Google Scholar
  82. 82.
    Patanakul, P.; Iewwongcharoen, B.; Milosevic, D.: An empirical study on the use of project management tools and techniques across project life-cycle and their impact on project success. J. Gen. Manag. 35(3), 41–66 (2010)Google Scholar
  83. 83.
    Jayaraman, R.: Project cost control: a new method to plan and control costs in large projects. Bus. Process Manag. J. 22(6), 1247–1268 (2016)Google Scholar
  84. 84.
    Aibinu, A.; Jagboro, G.: The effects of construction delays on project delivery in Nigerian construction industry. Int. J. Proj. Manag. 20(8), 593–599 (2002)Google Scholar
  85. 85.
    Narbaev, T.; De Marco, A.: An earned schedule-based regression model to improve cost estimate at completion. Int. J. Proj. Manag. 32(6), 1007–1018 (2014)Google Scholar
  86. 86.
    Ding, L.; Li, K.; Zhou, Y.; Love, P.E.: An IFC-inspection process model for infrastructure projects: Enabling real-time quality monitoring and control. Autom. Constr. 84, 96–110 (2017)Google Scholar
  87. 87.
    Perrenoud, A.; Lines, B.C.; Savicky, J.; Sullivan, K.T.: Using best-value procurement to measure the impact of initial risk-management capability on qualitative construction performance. J. Manag. Eng. 33(5), 04017019 (2017)Google Scholar
  88. 88.
    Alzahrani, J.I.; Emsley, M.W.: The impact of contractors’ attributes on construction project success: A post construction evaluation. Int. J. Proj. Manag. 31(2), 313–322 (2013)Google Scholar
  89. 89.
    Brace, I.: Questionnaire Design: How to Plan, Structure and Write Survey Material for Effective Market Research. Kogan Page Publishers, London (2018)Google Scholar
  90. 90.
    Xiong, B.; Skitmore, M.; Xia, B.: A critical review of structural equation modeling applications in construction research. Autom. Constr. 49, 59–70 (2015)Google Scholar
  91. 91.
    Shih, N.-J.; Wang, P.-H.: Point-cloud-based comparison between construction schedule and as-built progress: long-range three-dimensional laser scanner’s approach. J. Arch. Eng. 10(3), 98–102 (2004)Google Scholar
  92. 92.
    Beringer, C.; Jonas, D.; Kock, A.: Behavior of internal stakeholders in project portfolio management and its impact on success. Int. J. Proj. Manag. 31(6), 830–846 (2013)Google Scholar
  93. 93.
    Ahlemann, F.: Towards a conceptual reference model for project management information systems. Int. J. Proj. Manag. 27(1), 19–30 (2009)Google Scholar
  94. 94.
    Caniëls, M.C.; Bakens, R.J.: The effects of Project Management Information Systems on decision making in a multi project environment. Int. J. Proj. Manag. 30(2), 162–175 (2012)Google Scholar
  95. 95.
    Raymond, L.; Bergeron, F.: Project management information systems: An empirical study of their impact on project managers and project success. Int. J. Proj. Manag. 26(2), 213–220 (2008)Google Scholar
  96. 96.
    Crawford, P.; Bryce, P.: Project monitoring and evaluation: a method for enhancing the efficiency and effectiveness of aid project implementation. Int. J. Proj. Manag. 21(5), 363–373 (2003)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Civil EngineeringEastern Mediterranean UniversityMersin 10Turkey

Personalised recommendations