Cost-Effective Algorithm for Workflow Scheduling in Cloud Computing Under Deadline Constraint

  • Aida A. NasrEmail author
  • Nirmeen A. El-Bahnasawy
  • Gamal Attiya
  • Ayman El-Sayed
Research Article - Computer Engineering and Computer Science


Cloud computing is a popular model that allows users to store, access, process, and retrieve data remotely. It provides a high-performance computing with large scale of resources. However, this model requires an efficient scheduling strategy for resources management. Recently, several algorithms are presented to solve the resource scheduling problem. Nevertheless, still the problem exists with complex applications such as workflows, which need an efficient algorithm to be scheduled on the available resources. This paper presents a novel hybrid algorithm, called CR-AC, combining both the chemical reaction optimization (CRO) and ant colony optimization (ACO) algorithms to solve the workflow-scheduling problem. The proposed CR-AC algorithm is implemented in the CloudSim toolkit and evaluated by using real applications and Amazon EC2 pricing model. Moreover, the results are compared with the most recent algorithms: modified particle swarm optimization (PSO) and cost-effective genetic algorithm (CEGA). The experimental results indicate that the CR-AC algorithm achieves better results than the traditional CRO, the ACO, the modified PSO and CEGA algorithms, in terms of total cost, time complexity, and schedule length.


Cloud computing Workflow Scheduling CloudSim 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mei, L.; Chan, W.K.; Tse, T.H.: A tale of clouds: paradigm comparisons and some thoughts on research issues. Proc. APSCC 2008, 464–469 (2008)Google Scholar
  2. 2.
    Haijun, Z.; Cao, X.; Ho, J.K.L.; Chow, T.W.S.: Object-level video advertising: an optimization framework. IEEE Trans. Ind. Inform. 13(2), 520–531 (2017)CrossRefGoogle Scholar
  3. 3.
    Haijun, Z.; Llorca, J.; Davis, C.C.; Milner, S.D.: Nature-inspired self-organization, control, and optimization in heterogeneous wireless networks. IEEE Trans. Mob. Comput. 11(7), 1207–1222 (2012)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Nasr, A.A.; El-Bahnasawy, N.A.; El-Sayed, A.: Task scheduling optimization in heterogeneous distributed systems. Int. J. Comput. Appl. 107(4), 5–12 (2014)Google Scholar
  6. 6.
    Deelman, E.; Vahi, K.; Juve, G.; Rynge, M.; Callaghan, S.; Maechling, P.J.; Mayani, R.; Chen, W.; Ferreira da Silva, R.; Livny, M.; Wenger, K.: Pegasus: a workflow management system for science automation. Future Gener. Comput. Syst. 46, 17–35 (2015)CrossRefGoogle Scholar
  7. 7.
    Xu, Y.; Li, K.; He, L.; Truong, T.K.: A DAG scheduling scheme on heterogeneous computing systems using double molecular structure-based chemical reaction optimization. J. Parallel Distrib. Comput. 73, 1306–1322 (2013)CrossRefGoogle Scholar
  8. 8.
    Amalarethinam, D.I.G.; Lucia Agnes Beena, T.: Customer facilitated cost-based scheduling (CFCSC) in cloud. Proc. Comput. Sci. 46, 660–667 (2015)CrossRefGoogle Scholar
  9. 9.
    Elsherbiny, S.; Eldaydamony, E.; Alrahmawy, M.; Reyad, A.E.: An extended intelligent water drops algorithm for workflow scheduling in cloud computing environment. Egypt. Inform. J. 19, 1–23 (2017)Google Scholar
  10. 10.
    Visheratin, A.A.; Melnik, M.; Nasonov, D.: Workflow scheduling algorithms for hard-deadline constrained cloud environments. Proc. Comput. Sci. 80, 2098–2106 (2016)CrossRefGoogle Scholar
  11. 11.
    Arabnejad, H.; Barbosa, J.G.: A budget constrained scheduling algorithm for workflow applications. J. Grid Comput. 12, 665–679 (2014)CrossRefGoogle Scholar
  12. 12.
    Zhu, Z.; Zhang, G.; Li, M.; Liu, X.: Evolutionary multi-objective workflow scheduling in cloud. IEEE Trans. Parallel Distrib. Syst. 27, 1344–1357 (2016)CrossRefGoogle Scholar
  13. 13.
    Xiang, B.; Zhang, B.; Zhang, L.: Greedy-ant: ant colony system-inspired workflow scheduling for heterogeneous computing. IEEE Access 5, 11404–11412 (2017)CrossRefGoogle Scholar
  14. 14.
    Khalili, A.; Babamir, S.M.: Optimal scheduling workflows in cloud computing environment using Pareto based Grey Wolf Optimizer. Concurr. Comput. Pract. Exp. 29, 1–11 (2017)CrossRefGoogle Scholar
  15. 15.
    Verma, A.; Kaushal, S.: Cost minimized PSO based workflow scheduling plan for cloud computing. Int. J. Inf. Technol. Comput. Sci. 8, 37–43 (2015)Google Scholar
  16. 16.
    Meena, J.; Kumar, M.; Vardhan, M.: Cost Effective Genetic Algorithm for Workflow Scheduling in Cloud Under Deadline Constraint. IEEE Access 4, 5065–5082 (2016)CrossRefGoogle Scholar
  17. 17.
    Nasr, A.A.; El-Bahnasawy, N.A.; Attiya, G.; El-Sayed, A.: Using the TSP solution strategy for cloudlet scheduling in cloud computing. J. Netw. Syst. Manag. 1–22, 2018 (2018)Google Scholar
  18. 18.
    Bidaki, M.; Tabbakh, S.R.K.; Yaghoobi, M.; Shakeri, H.: Secure and efficient SOS-based workflow scheduling in cloud computing. Int. J. Secur. Its Appl. 11(3), 41–58 (2017)Google Scholar
  19. 19.
  20. 20.
    Nasr, A.A.; EL-Bahnasawy, N.A.; EL-Sayed, A.: A new duplication task scheduling algorithm in heterogeneous distributed computing systems. Bull. Electr. Eng. Inform. 5(3), 373–382 (2016)Google Scholar
  21. 21.
    Xu, J.; Lam, A.Y.S.; Li, V.O.K.: Chemical reaction optimization for task scheduling in grid computing. IEEE Trans. Parallel Distrib. Syst. 22(10), 1624–1631 (2011)CrossRefGoogle Scholar
  22. 22.
    Liu, C.; Zou, C.; Wu, P.: A task scheduling algorithm based on genetic algorithm and ant colony optimization in cloud computing. In: Proceedings of the 13th International Symposium on Distributed Computing and Applications to Business, Engineering and Science (DCABES) (2014)Google Scholar
  23. 23.
  24. 24.
    Juve, G.; Chervenak, A.; Deelman, E.; Bharathi, S.; Mehta, G.; Vahi, K.: Characterizing and profiling scientific workflows. Future Gener. Comput. Syst. 29(3), 682–692 (2013)CrossRefGoogle Scholar
  25. 25.
    Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.; Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41, 23–50 (2010)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Computer Science and Engineering Department, Faculty of Electronic EngineeringMenofia UniversityTantaEgypt
  2. 2.Computer Science and Engineering Department, Faculty of Electronic EngineeringMenofia UniversityEl Sadat CityEgypt
  3. 3.Computer Science and Engineering Department, Faculty of Electronic EngineeringMenofia UniversityMenoufEgypt

Personalised recommendations