Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 505–520 | Cite as

Facies Analysis and Sequence Stratigraphy of Al-Kharrar Lagoon Coastal Sediments, Rabigh Area, Saudi Arabia: Impact of Sea-Level and Climate Changes on Coastal Evolution

  • Ibrahim M. GhandourEmail author
  • Rabea A. Haredy
Research Article - Earth Sciences
  • 25 Downloads

Abstract

This study employs the results of facies analyses and sequence stratigraphy of the coastal plain sediments of Al-Kharrar Lagoon, Rabigh, Saudi Arabia, to interpret the impact of Late Quaternary sea-level and climate changes on sedimentation, facies distribution and Red Sea coastal evolution. Facies analysis of the sediments that crop out in a recently excavated quarry section and those recovered from six shallow cores obtained from the tidal flat south Al-Kharrar Lagoon enabled identifying four facies associations characterizing fluvial, intertidal–supratidal, lagoonal and intertidal flat deposits. Facies architecture and sequence stratigraphic interpretations indicate two distinct depositional stages. The first stage included the deposition of marine-influenced gravel-dominated fluvial channel deposits interdigitating with or overlain by grey lagoonal mud and fine sands suggesting deposition during a period of progressive sea-level rise and enhanced precipitation. The second stage records deposition of prograding intertidal–supratidal deposits containing calcareous nodules and mottles and evaporite minerals at quarry section suggesting deposition during a sea-level fall under an arid climate. The results of this study are correlated with the Late Quaternary periods of humidity and aridity. It is found that the first stage corresponds to the postglacial early–middle Holocene sea-level rise and wet climate, whereas the second stage corresponds to the mid- to late Holocene isostatically controlled sea-level fall and arid climate.

Keywords

Al-Kharrar Lagoon Red Sea coastal plain Calcareous paleosols Late Quaternary climate Sea level 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. 458-150/1434. The authors, therefore, acknowledge with thanks DSR for technical and financial support. The authors are very grateful for the reviewers and the editor for their constructive comments and editorial handling

References

  1. 1.
    Padmalal, D.; Nair, K.M.; Kumaran, K.P.N.; Sajan, K.; Mohan, S.V.; Maya, K.; Santhosh, V.; Anooja, S.; Limaye, R.B.: Climate and sea-level changes in a Holocene Bay Head Delta, Kerala, Southwest coast of India. In: Sundaresan, J., Sreekesh, S., Ramanathan, A.L., Sonnenschein, L., Boojh, R. (eds.) Climate Change and Island and Coastal Vulnerability, pp. 191–208. Springer, New York (2013)CrossRefGoogle Scholar
  2. 2.
    Lambeck, K.; Roubya, H.; Purcella, A.; Sunc, Y.; Sambridgea, M.: Sea-level and global ice volumes from the Last Glacial Maximum to the Holocene. PNAS 111, 15296–15303 (2014)CrossRefGoogle Scholar
  3. 3.
    Kakroodi, A.A.; Leroy, S.A.G.; Kroonenberg, S.B.; Lahijani, H.A.K.; Mohammadian, H.; Boomer, I.; Goorabi, A.: Late Pleistocene and Holocene sea-level change and coastal paleoenvironment evolution along the Iranian Caspian shore. Mar. Geol. 361, 111–125 (2015)CrossRefGoogle Scholar
  4. 4.
    Vacchi, M.; Marriner, N.; Morhange, C.; Spada, G.; Fontana, A.; Rovere, A.: Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: sea-level variability and improvements in the definition of the isostatic signal. Earth Sci. Rev. 155, 172–197 (2016)CrossRefGoogle Scholar
  5. 5.
    Rholing, E.J.; Grant, K.; Hemleben, Ch; Siddall, M.; Hoogakker, B.A.A.; Bolshaw, M.; Kucera, M.: High rates of sea-level rise during the last interglacial period. Nat. Geosci. 1, 38–42 (2008)CrossRefGoogle Scholar
  6. 6.
    Mauz, B.; Bungenstock, F.: How to reconstruct trends of late Holocene relative sea-level: a new approach using tidal flat clastic sediments and optical dating. Mar. Geol. 237(3–4), 225–237 (2007)CrossRefGoogle Scholar
  7. 7.
    Goodwin, I.D.; Harvey, N.: Subtropical sea-level history from coral microatolls in the Southern Cook Islands, since 300 AD. Mar. Geol. 253, 14–25 (2008)CrossRefGoogle Scholar
  8. 8.
    Hein, C.J.; FitzGerald, D.M.; Milne, G.A.; Bard, K.; Fattovich, R.: Evolution of a Pharaonic harbor on the Red Sea: implications for coastal response to changes in sea-level and climate. Geol. Soc. Am. 39(7), 687–690 (2012)Google Scholar
  9. 9.
    de Menocal, P.; Ortiz, J.; Guilderson, T.; Sarnthein, M.: Abrupt onset and termination of the African humid period: rapid climate responses to gradual insolation forcing. Quat. Sci. Rev. 19, 347–361 (2000)CrossRefGoogle Scholar
  10. 10.
    Mitrovica, J.X.; Milne, G.A.: On the origin of late Holocene sea-level highstands within equatorial ocean basins. Quat. Sci. Rev. 21, 2179–2190 (2002)CrossRefGoogle Scholar
  11. 11.
    Cheddadi, R.; Yu, G.; Guiot, J.; Harrison, S.P.; Prentice, I.C.: The climate of Europe 6000 years ago. Clim. Dyn. 13, 1–9 (1997)CrossRefGoogle Scholar
  12. 12.
    Peyron, O.; Goring, S.; Dormoy, I.; Kotthoff, U.; Pross, J.; de Bealieu, J.L.; Drescher-Schneider, R.; Magny, M.: Holocene seasonality changes in the central Mediterranean region reconstructed from the pollen sequences of Lake Accesa (Italy) and Tenaghi Philippon (Greece). Holocene 21, 131–146 (2011)CrossRefGoogle Scholar
  13. 13.
    Almogi-Labin, A.; Hemleben, C.; Meischner, D.; Erlenkeuser, H.: Paleoenvironmental events during the last 13,000 years in the Central Red Sea as recorded by pteropoda. Paleoceanography 6, 83–98 (1991)CrossRefGoogle Scholar
  14. 14.
    Hemleben, C.; Meischner, D.; Zhan, R.; Almogi-Labin, A.; Erlenkeuser, H.; Hiller, B.: Three hundred eighty thousand year long stable isotope and faunal records from the Red Sea: influence of global sea-level change on hydrography. Paleoceanography 11, 147–56 (1996)CrossRefGoogle Scholar
  15. 15.
    Arz, H.W.; Lamy, L.; Pätzold, J.; Müller, P.J.; Prins, M.: Mediterranean moisture source for an early-Holocene humid period in the northern Red Sea. Science 300, 118–121 (2003)CrossRefGoogle Scholar
  16. 16.
    Siddall, M.; Smeed, D.A.; Hemleben, C.; Rohling, E.J.; Schmelzer, I.; Peltier, W.R.: Understanding the Red Sea response to sea-level. Earth Planet Sci Let. 225, 421–434 (2004)CrossRefGoogle Scholar
  17. 17.
    Edelman-Furstenberg, Y.; Almogi-Labin, A.; Hemleben, C.: Palaeoceanographic evolution of the central Red Sea during the late Holocene. Holocene 19, 117–127 (2009)CrossRefGoogle Scholar
  18. 18.
    Trommer, G.; Siccha, M.; Rohling, E.J.; Grant, K.; van der Meer, M.T.J.; Schouten, S.; Hemleben, C.; Kucera, M.: Millennial-scale variability in Red Sea circulation in response to Holocene insolation forcing. Paleoceanography 25, PA3203 (2010)CrossRefGoogle Scholar
  19. 19.
    Abu-Zied, R.H.; Bantan, R.A.: Palaeoenvironment, palaeoclimate and sea-level changes in the Shuaiba Lagoon during the late Holocene (last 3.6 ka), eastern Red Sea coast, Saudi Arabia. Holocene 25(8), 1301–1312 (2015)CrossRefGoogle Scholar
  20. 20.
    Bailey, G.N.: The Red Sea, coastal landscapes and hominin dispersals. In: Petraglia, M.D., Rose, J.I. (eds.) The Evolution of Human Populations in Arabia, pp. 15–37. Springer, Dordrecht (2009)Google Scholar
  21. 21.
    Lambeck, K.; Purcell, A.; Flemming, N.; Vita-Finzi, C.; Alsharekh, A.; Bailey, G.: Sea-level and shoreline reconstructions for the Red Sea: isostatic and tectonic considerations and implications for hominin migration out of Africa. Quat. Sci. Rev. 30, 3542–3574 (2011)CrossRefGoogle Scholar
  22. 22.
    Marinova, E.; Linseele, V.; Vermeersch, P.: Holocene environment and subsistence patterns near the Tree Shelter, Red Sea Mountains, Egypt. Quat. Res. 70, 392–397 (2008)CrossRefGoogle Scholar
  23. 23.
    Engel, M.; Brückner, H.; Pint, A.; Wellbrock, K.; Ginau, A.; Voss, P.; Grottker, M.; Klasen, N.; Frenzel, P.: The early Holocene humid period in NW Saudi Arabia -Sediments, microfossils and palaeo-hydrological modeling. Quat. Intern. 266, 131–141 (2012)CrossRefGoogle Scholar
  24. 24.
    Ghandour, I.M.; Al-Washmi, H.A.; Haredy, R.A.; Zubairi, A.: Facies evolution and depositional model of an arid microtidal coast: example from the coastal plain at the mouth of Wadi Al-Hamd, Red Sea, Saudi Arabia. Turk. J. Earth Sci. 25, 256–273 (2016)CrossRefGoogle Scholar
  25. 25.
    Rasul, N.M.A.: Lagoon sediments of the Eastern Red Sea: distribution processes, pathways and patterns. In: Rasul, N.M.A., Stewart, I.C.F. (eds.) The Formation, Morphology, Oceanography and Environment of a Young Ocean Basin, pp. 281–316. Springer, Heidelberg (2015)Google Scholar
  26. 26.
    Kvale, E.P.; Cutright, J.; Bllodeau, D.; Archer, A.; Johnson, H.R.; Pickett, B.: Analysis of modern tides and implications for ancient tidalites. Cont. Shelf Res. 15, 1921–1943 (1995)CrossRefGoogle Scholar
  27. 27.
    Semeniuk, V.: Coastal forms and Quaternary processes along the arid Pilbara coast of northwestern Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 123, 49–84 (1996)CrossRefGoogle Scholar
  28. 28.
    Fielding, C.R.; Allen, J.P.; Alexander, J.; Gibling, M.R.: Facies model for fluvial systems in the seasonal tropics and subtropics. Geology 37, 623–626 (2009)CrossRefGoogle Scholar
  29. 29.
    Caldas, L.H.O.; Stattegger, K.; Vital, H.: Holocene sea-level history: evidence from coastal sediments of the northern Rio Grande do Norte Coast, NE Brazil. Mar. Geol. 228, 39–53 (2006)CrossRefGoogle Scholar
  30. 30.
    Da Cruz Miranda, M.C.; Rossetti, D.F.; Pessenda, R.L.C.: Quaternary paleoenvironments and relative sea-level changes in Marajó Island (Northern Brazil). Palaeogeogr. Palaeoclimatol. Palaeoecol. 282, 19–31 (2009)CrossRefGoogle Scholar
  31. 31.
    Parham, P.R.; Riggs, S.R.; Culver, S.J.; Mallinson, D.J.; Jack-Rink, W.; Burdette, K.: Quaternary coastal lithofacies, sequence development and stratigraphy in a passive margin setting, North Carolina and Virginia. USA. Sedimentology 60(2), 503–547 (2013)CrossRefGoogle Scholar
  32. 32.
    Noffke, N.; Christian, D.; Wacey, D.; Hazen, R.M.: Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology 13, 1103–1124 (2013)CrossRefGoogle Scholar
  33. 33.
    Taj, R.J.; Aref, M.A.M.; Schreiber, B.C.: The influence of microbial mats on the formation of sand volcanoes and mounds in the Red Sea coastal plain, south Jeddah, Saudi Arabia. Sed. Geol. 311, 60–74 (2014)CrossRefGoogle Scholar
  34. 34.
    Behairy, A.K.A.; Durgaprasada Rao, N.V.N.; El-Shater, A.: A siliciclastic coastal sabkha, Red Sea coast, Saudi Arabia. J. King Abdulaziz Univ. Mar. Sci. 2, 65–77 (1991)CrossRefGoogle Scholar
  35. 35.
    El Abd, Y.; Awad, M.B.: Evaporitic sediment distributions in Al-Kharrar sabkha, west Red Sea of Saudi Arabia, as revealed from the electrical soundings. Mar. Geol. 97, 137–143 (1991)CrossRefGoogle Scholar
  36. 36.
    Durgaprasada Rao, N.V.N.; Al-Imam, O.A.O.; Behairy, A.K.A.: Early mixed-water dolomitization in the Pleistocene reef limestones, west coast of Saudi Arabia. Sed Geol. 53, 231–245 (1987)CrossRefGoogle Scholar
  37. 37.
    Brown, G.F.; Schmidt, D.L.; Huffman, A.C.: Geology of the Arabian Peninsula, shield area of western Saudi Arabia. USA Geol. Surv. Prof. Pap. 560–A, 188 pp (1989)Google Scholar
  38. 38.
    Rabaa, S.M.A.: Geomorphological characteristics of the Red Sea coast with special emphasis on the formation of Marsas in the Sudan. In: Proceedings of a Symposium on Coastal and Marine Environments of the Red Sea, Gulf of Aden and Tropical Western Indian Ocean. pp. 53–72. University of Khartoum, Khartoum, Sudan (1980)Google Scholar
  39. 39.
    Guilcher, A.: Red Sea coasts. In: Bird, E.C.F., Schwartz, M.L. (eds.) The World’s Coastline, pp. 713–717. Van Nostrand Reinhold, New York (1985)Google Scholar
  40. 40.
    Haszeldine, R.S.: Fluvial bars reconstructed from deep straight channel, Upper Carboniferous coalfield of northeast England. J. Sed. Petrol. 53, 1223–1247 (1983)Google Scholar
  41. 41.
    Collinson, J.D.: Alluvial sediments. In: Reading, H.G. (ed.) Sedimentary Environments: Processes, Facies and Stratigraphy, pp. 37–82. Blackwell, Cambridge (1996)Google Scholar
  42. 42.
    Miall, A.D.: The Geology of Fluvial Deposits. Springer, New York (1996)Google Scholar
  43. 43.
    Blair, T.C.: Sedimentary processes and facies of the water laid Anvil Spring Canyon alluvial fan, Death Valley, California. Sedimentology 46, 913–940 (1999)CrossRefGoogle Scholar
  44. 44.
    Miall, A.D.: Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth Sci. Rev. 22, 261–308 (1985)CrossRefGoogle Scholar
  45. 45.
    Ashworth, P.J.; Best, J.L.; Peakall, J.; Lorsong, J.A.: The influence of aggradation rate on braided alluvial architecture: field study and physical scale modeling of the Ashburton River gravels, Canterbury Plains, New Zealand. In: Smith, N.D., Rogers, J. (eds.) Fluvial Sedimentology VI International Association of Sedimentologists Special Publication, pp. 28, 333–346. Blackwell Science, Oxford (1999)Google Scholar
  46. 46.
    Retallack, G.J.: Soils of the Past: An Introduction to Palaeopedology. Unwin-Hyman, London (1990)CrossRefGoogle Scholar
  47. 47.
    Williams, C.A.; Krause, F.F.: Paleosol chronosequences and peritidal deposits of the Middle Devonian (Givetian) Yahatinda Formation, Wasootch Creek, Alberta, Canada. Bull. Canadian Petrol. Geol. 48, 1–18 (2000)CrossRefGoogle Scholar
  48. 48.
    Tanner, L.H., Lucas, S.G.: Calcareous paleosols of the Upper Triassic Chinle Group, Four Corners region, southwestern United States: Climatic implications. In: Alonso-Zarza, A.M., Tanner, L.H. (eds.) Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates. pp. 53–74. The Geological Society of America Special Paper 416 (2006)Google Scholar
  49. 49.
    Cecil, C.B.: Paleoclimate controls on stratigraphic repetition of chemical and siliciclastic rocks. Geology 18, 533–536 (1990)CrossRefGoogle Scholar
  50. 50.
    Tanner, L.H.: Palustrine-lacustrine and alluvial facies of the (Norian) Owl Rock Formation (Chinle Group), Four Corners Region, southwestern U.S.A.: implications for Late Triassic paleoclimate. J. Sed. Res. 70, 1280–1289 (2000)CrossRefGoogle Scholar
  51. 51.
    Wieder, M.; Gvirtzman, G.; Porat, N.; Dassa, M.: Paleosols of the southern coastal plain of Israel. J. Plant Nutrit. Soil. Sci. 171, 533–541 (2008)CrossRefGoogle Scholar
  52. 52.
    Evans, G.; Murray, J.W.; Biggs, H.E.J.; Bate, R.; Bush, P.R.: The oceanography, ecology, sedimentology and geomorphology of parts of the Trucial Coast barrier island complex, Persian Gulf. In: Purser, B.J. (ed.) The Persian Gulf, pp. 233–278. Springer, Berlin (1973)CrossRefGoogle Scholar
  53. 53.
    Walker, R.G.; Plint, A.G.: Wave- and storm-dominated shallow marine systems. In: Walker, R.G., James, N.P. (eds.) Facies Models-Response to Sea-Level Changes, pp. 219–238. Geological Association of Canada, St. John’s (1992)Google Scholar
  54. 54.
    Dalrymple, R.W.; Zaitlin, B.A.; Boyd, R.: Estuarine facies models: conceptual basis and stratigraphic implications. J. Sed. Petrol. 62, 1130–1146 (1992)CrossRefGoogle Scholar
  55. 55.
    Gerdes, S.: Structures left by modern microbial mats in their host sediments. In: Schiber, J., Bose, P.K., Erikson, P.G. (eds.) Atlas of Microbial Mat Features Preserved with the Clastic Rock Record, pp. 5–38. Elsevier, Amsterdam (2007)Google Scholar
  56. 56.
    Davies, Jr: Coastal Sedimentary Environments, 2nd edn. Springer, New York (1985)CrossRefGoogle Scholar
  57. 57.
    de Boer, P.L.: Intertidal sediments: composition and structure. In: Eisma, D. (ed.) Intertidal Deposits-River Mouths, Tidal Flats, and Coastal Lagoons, pp. 345–362. CRC Press, Boca Raton (1998)Google Scholar
  58. 58.
    Embry, A., Johannessen, A.: T-R sequence stratigraphy, facies analysis and reservoir distribution in the uppermost Triassic-Lower Jurassic succession, western Sverdrup Basin, Arctic Canada. In: Vorren, T.O., Bergsager, E., Dahl-stamnes, O.A., Holter, E., Johansen, B., Lie, E., Lund, T.B. (eds.) Norwegian Petroleum Society. pp. 121-146 (NPF), Special Publication (1992)Google Scholar
  59. 59.
    Embry, A.: Transgressive–regressive (T–R) sequence analysis of the Jurassic succession of the Sverdrup Basin, Canadian Arctic Archipelago. Can. J. Earth Sci. 30, 301–320 (1993)CrossRefGoogle Scholar
  60. 60.
    Shanley, K.W.; McCabe, P.J.: Perspectives on the sequence stratigraphy of continental strata. Am. Assoc. Petrol. Geol. Bull. 78, 544–568 (1994)Google Scholar
  61. 61.
    Olsen, T.; Steel, R.J.; Høgseth, K.; Skar, T.; Røe, S.L.: Sequential architecture in a fluvial succession: sequence stratigraphy in the Upper Cretaceous Mesaverde Group, Price Canyon, Utah. J. Sed. Res. B65, 265–280 (1995)CrossRefGoogle Scholar
  62. 62.
    McLaurin, B.T.; Steel, R.J.: Fourth-order nonmarine to marine sequences, middle Castlegate Formation, Book Cliffs, Utah. Geology 28, 359–362 (2000)CrossRefGoogle Scholar
  63. 63.
    Posamentier, H.W., Allen, G.P.: Siliciclastic sequence stratigraphy—concepts and applications. SEPM Concepts in Sedimentology and Paleontology Series 7 (1999)Google Scholar
  64. 64.
    Mancini, M.; D’Anastasio, E.; Barbieri, M.; De Martin, P.M.: Geomorphological, paleontological and \(^{87}\)Sr/\(^{86}\)Sr isotope analyses of early Pleistocene paleoshorelines to define the uplift of Central Apennines (Italy). Quat. Res. 67, 487–501 (2007)CrossRefGoogle Scholar
  65. 65.
    Chaytor, J.D.; Goldfinger, C.; Meiner, M.A.; Huftile, G.J.; Romos, C.G.; Legg, M.R.: Measuring vertical tectonic motion at the intersection of the Santa Cruz Catalina Ridge and Northern Channel Islands platform, California Continental Borderland, using submerged paleoshorelines. Geol. Soc. Am. Bull. 120, 1053–1071 (2008)CrossRefGoogle Scholar
  66. 66.
    Helland-Hansen, W.; Martinsen, O.J.: Shoreline trajectories and sequences: description of variable epositional-dip scenarios. J. Sed. Res. 66, 670–688 (1996)Google Scholar
  67. 67.
    Catuneanu, O.: Principles of Sequence Stratigraphy. Elsevier, Amsterdam (2006)Google Scholar
  68. 68.
    Heckel, P.H.: Evaluation of evidence for glacio-eustatic control over marine Pennsylvanian cyclothems in North America and consideration of possible tectonic effects. In: Dennison, J.M., Ettensohn, F.R. (eds.) Tectonic and Eustatic Controls on Sedimentary Cycles, pp. 65–87. Society of Economic Paleontologists and Mineralogists, Tulsa (1994). (Concepts in Sedimentology and Paleontology)CrossRefGoogle Scholar
  69. 69.
    Mángano, G.; Buatois, L.G.; West, R.R.; Maples, C.G.: Ichnology of a Pennsylvanian equatorial tidal flat the Stull Shale Member at Waverly, Eastern Kansas. Kansas Geol. Surv. Bull. 245, 1–133 (2002)Google Scholar
  70. 70.
    Siddall, M.; Rohling, E.J.; Almogi-Labin, A.; Hemleben, Ch; Meischner, D.; Schmelzer, I.; Smeed, D.A.: Sea-level fluctuations during the last glacial cycle. Nature 423, 853–858 (2003)CrossRefGoogle Scholar
  71. 71.
    Grant, K.M.; Rohling, E.J.; Bar-Matthews, M.; Ayalon, A.; Medina-Elizalde, M.; Bronk Ramsey, C.; Satow, C.; Roberts, A.P.: Rapid coupling between ice volume and polar temperature over the past 150 kyr. Nature 491, 744–747 (2012)CrossRefGoogle Scholar
  72. 72.
    Blue, L.: Locating the Harbour: Myos Hormos / Quseir al-Qadim: a Roman and Islamic Port on the Red Sea Coast of Egypt. Int. J. Naut. Archaeol. 36(2), 265–281 (2007)CrossRefGoogle Scholar
  73. 73.
    Plaziat, J.-C.; Baltzer, F.; Choukri, A.; Conchon, O.; Freytet, P.; Orszag-Sperber, F.; Purser, B.; Raguideau, A.; Reyss, J.-L.: Quaternary changes in the Egyptian Shoreline of the Northwestern Red Sea and Gulf of Suez. Quat. Int. 29(30), 11–22 (1995)CrossRefGoogle Scholar
  74. 74.
    Shaked, Y.; Marco, S.; Lazar, B.; Stein, M.; Cohen, C.; Sass, E.; Agnon, A.: Late Holocene Shorelines at the Gulf of Aqaba: Migrating Shorelines Under Conditions of Tectonic and Sea Level Stability. European Geosciences Union Stephan Mueller Special Publication Series, vol. 2, pp. 1–7 (2002)Google Scholar
  75. 75.
    Peltier, W.R.: On eustatic sea level history: Last Glacial Maximum to Holocene. Quat. Sci. Rev. 21, 377–396 (2002)CrossRefGoogle Scholar
  76. 76.
    Jado, A.R.; Zötl, J.G.: Quaternary Period in Saudi Arabia. Volume 2: Sedimentological, Hydrogeological, Hydrochemical, Geomorphological, Geochronological and Climatological Investigations in Western Saudi Arabia. Springer, Vienna (1984)CrossRefGoogle Scholar
  77. 77.
    Nakada, M.; Kimura, R.; Okuno, J.; Moriwaki, K.; Miura, H.; Maemoku, H.: Late Pleistocene and Holocene melting history of the Antarctic ice sheet derived from sea-level variations. Mar. Geol. 167, 85–103 (2000)CrossRefGoogle Scholar
  78. 78.
    Hoelzmann, P.; Jolly, D.; Harrison, S.P.; Laarif, F.; Bonnefille, R.; Pachur, H.J.: Mid-Holocene land-surface conditions in northern Africa and the Arabian Peninsula: a data set for the analysis of biogeophysical feedbacks in the climate system. Global Biogeochem. Cy. 12, 35–51 (1998)CrossRefGoogle Scholar
  79. 79.
    Gasse, F.: Hydrological changes in the African tropics since the Last Glacial Maximum. Quat. Sci. Rev. 19, 189–211 (2000)CrossRefGoogle Scholar
  80. 80.
    Enzel, Y.; Bookman, R.; Sharon, D.; Gvirtzman, H.; Dayan, U.; Ziv, B.; Stein, M.: Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall. Quat. Res. 60, 263–273 (2003)CrossRefGoogle Scholar
  81. 81.
    Legge, H.L.; Mutterlose, J.; Arz, H.W.: Climatic changes in the northern Red Sea during the last 22,000 years as recorded by calcareous nannofossils. Paleoceanography 21, PA1003 (2006)CrossRefGoogle Scholar
  82. 82.
    Almogi-Labin, A.; Perelis-Grossovicz, L.; Raab, M.: Living Ammonia from a hypersaline inland pool, Dead Sea area, Israel. J. Foram. Res. 22, 257–266 (1992)CrossRefGoogle Scholar
  83. 83.
    Geslin, E.; Stouff, V.; Debenay, J.-P.; Lesourd, M.: Environmental variation and foraminiferal test abnormalities. In: Martin, R.E. (ed.) Environmental Micropaleontology: The Application of Microfossils to Environmental Geology. Topics in Geobiology, vol. 15, pp. 192–215. Springer, Boston (2000)CrossRefGoogle Scholar
  84. 84.
    Parker, A.; Davies, C.; Wilkinson, T.: The early to mid-Holocene moist period in Arabia: some recent evidence from lacustrine sequences in eastern and south-western Arabia. Proc. Sem. Arab. Stud. 36, 243–255 (2006)Google Scholar
  85. 85.
    Neff, U.; Burns, S.J.; Mangini, A.; Mudelsee, M.; Fleitmann, D.; Matter, A.: Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411, 290–293 (2001)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Marine Geology, Faculty of Marine ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of Geology, Faculty of ScienceTanta UniversityTantaEgypt

Personalised recommendations