Variations in Chemicals and Antimicrobial Properties of Schinus molle Fruits Grown in Abha Area, Saudi Arabia
- 9 Downloads
Abstract
Antimicrobial properties of various solvent extracts from fruits of Schinus molle grown in the Abha area of Saudi Arabia were determined against selected gram-positive and gram-negative bacteria and Candida species using the agar well diffusion method. Seven populations from S. molle plants situated at 2193-m, 2246-m, 2197.7-m, 2441-m, 2372- m, 2250.6-m and 2175-m were assessed. The results revealed that different solvent extracts of the fruits demonstrated antimicrobial effects on all microbial strains tested. The maximum activities were exhibited by (i) an acetone extract from population at 2246-m (\(33.00 \pm 0.57\) mm), (ii) ethanol extract from population at 2193-m (\(30.00 \pm 1.15\) mm) against Staphylococcus aureus and (iii) from a hot acetone extract (\(22.00 \pm 3.21\) mm) from the population at 2372-m against Micrococcus luteus. The MICs levels of the acetone extract range from 0.502 to 0.289 g/ml against S. aureus, and hot methanol fruits extracts against Candidaalbicans range from 0.335 to 0.259 g/ml. GC–MS and HPLC analysis revealed the presence of dominant phytochemicals in each population, including 2-pentanone, 4-hydroxy-4-methyl- and vitamin \(\hbox {B}_{12}\) in populations at 2175-m, 2193-m, 2197.7-m and 2250.6-m; 2-pentanone, 4-hydroxy-4-methyl- and folic acid in populations at 2246-m and 2441-m; 2-pentanone, 4-hydroxy-4-methyl- and vitamin \(\hbox {B}_{1}\) in populations at 2372-m. In conclusion, these findings indicate that extracts of S. molle fruit may be used as source of natural compounds for the manufacture of antibiotic drugs. Variable amount of phytocompounds and vitamins in each location may be used as chemotype fingerprint of the plant species related to its geographic distributions.
Keywords
Antimicrobial Schinus molle Phytochemicals Extracts VitaminsPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
We would like to thank King Abdul-Aziz City for Science and Technology (KACST), Saudi Arabia, for providing financial support (Grant No. AT-36-305).
References
- 1.Kelmanson, J.E.; Jäger, A.K.; van Staden, J.: Zulu medicinal plants with antibacterial activity. J. Ethnopharmacol. 69, 241–246 (2000)CrossRefGoogle Scholar
- 2.Ahmad, I.; Beg, A.Z.: Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J. Ethnopharmacol. 74, 113–123 (2001)CrossRefGoogle Scholar
- 3.Westh, H.; Zinn, C.S.; Rosdahl, V.T.: Sarisa study group: an international multicenter study of antimicrobial consumption and resistance in Staphylococcus aureus isolates from 15 hospitals in 14 countries. Microb. Drug Resist. 10, 169–176 (2004)CrossRefGoogle Scholar
- 4.Mothana, R.A.; Lindequist, U.: Antimicrobial activity of some medicinal plants of the island Soqotra. J. Ethnopharmacol. 96, 177–181 (2005)CrossRefGoogle Scholar
- 5.Lim, T.K.: Edible Medicinal and Non-medicinal Plants: Volume 1, Fruits: Schinus molle. Springer, Netherlands (2012)CrossRefGoogle Scholar
- 6.Marongiu, B.; Porcedda, A.P.S.; Casu, R.; Pierucci, P.: Chemical composition of the oil and supercritical \(\text{ CO }_{2}\) extract of Schinus molle L. Flavour Fragr. J. 19, 554–558 (2004)CrossRefGoogle Scholar
- 7.Alanís-Garza, B.A.; González-González, G.M.; Salazar-Aranda, R.; de Torres, N.W.; Rivas-Galindo, V.M.: Screening of antifungal activity of plants from the northeast of Mexico. J. Ethnopharmacol. 114, 468–471 (2007)CrossRefGoogle Scholar
- 8.Machado, D.G.; Kaster, M.P.; Binfaré, R.W.; Dias, M.; Santos, A.R.; Pizzolatti, M.G.; Brighnete, I.M.C.; Rodrigues, A.L.S.: Antidepressant-like effect of the extract from leaves of Schinus molle L. in mice: evidence for the involvement of the monoaminergic system. Prog. Neuro Psychopharmacol. Biol. Psychiatry 31, 421–428 (2007)CrossRefGoogle Scholar
- 9.Molina-Salinas, G.M.; Pérez-López, A.; Becerril-Montes, P.; Salazar-Aranda, R.; Said- Fernández, S.; de Torres, N.W.: Evaluation of the flora of Northern Mexico for in vitro antimicrobial and antituberculosis activity. J. Ethnopharmacol. 109, 435–441 (2007)CrossRefGoogle Scholar
- 10.Hayouni, E.A.; Chraief, I.; Abedrabba, M.; Bouix, M.; Leveau, J.Y.; Mohammed, H.; Hamdi, M.: Tunisian Salvia officinalis L. and Schinus molle L. essential oils: their chemical compositions and their preservative effects against Salmonella inoculated in minced beef meat. Int. J. Food Microbiol. 125, 242–251 (2008)CrossRefGoogle Scholar
- 11.Ibrahim, B.; Al-Naser, Z.: Analysis of fruits Schinus molle extractions and the efficacy in inhibition of growth the fungi in laboratory. Int. J. ChemTech Res. 6, 2799–2806 (2014)Google Scholar
- 12.Ferrero, A.A.; González, J.O.W.; Chopa, C.S.: Biological activity of Schinus molle on Triatoma infestans. Fitoterapia 77, 381–383 (2006)CrossRefGoogle Scholar
- 13.Maffei, M.; Chialva, F.: Essential oils from Schinus molle L. berries and leaves. Flavour Fragr. J 5, 49–52 (1990)CrossRefGoogle Scholar
- 14.Zahed, N.; Hosni, K.; Brahim, N.B.; Kallel, M.; Sebei, H.: Allelopathic effect of Schinus molle essential oils on wheat germination. Acta Physiol. Plant. 32, 1221–1227 (2010)CrossRefGoogle Scholar
- 15.Abrha, L.H.; Unnithan, C.R.: Chemical composition and antibactrial activity of essential oil of Schinus molle. Unique J. Pharm. Biol. Sci. 02, 9–12 (2014)Google Scholar
- 16.Mohanasundari, C.; Natarajan, D.; Srinivasan, K.; Umamaheswari, S.; Ramachandran, A.: Antibacterial properties of Passiflora foetida L.—a common exotic medicinal plant. Afr. J. Biotechnol. 6, 2650–2653 (2007)CrossRefGoogle Scholar
- 17.Patel, S.J.; Nithin, V.; Pradeep, S.: Screening for antimicrobial activity of weeds. Internet J. Microbiol. 4, 1–7 (2007)Google Scholar
- 18.Alrumman, S.A.; Moustafa, M.F.; Alamri, S.A.: Anti-bacterial and anti-fungal investigation of Astragalus atropilosulus subsp. Abyssinicus. Afr. J. Microbiol. Res. 6, 6365–6369 (2012)CrossRefGoogle Scholar
- 19.Pundir, R.K.; Jain, P.: Evaluation of five chemical food preservatives for their antibacterial activity against bacterial isolates from bakery products and mango pickles. J. Chem. Pharm. Res. 3, 24–31 (2011)Google Scholar
- 20.Ezhilan, B.P.; Neelamegam, R.: GC–MS analysis of phytocomponents in the ethanol extract of Polygonum chinense L. Pharmacognosy Res. 4, 11–14 (2012)Google Scholar
- 21.Perveen, S.; Yasmin, A.; Khan, K.M.: Quantitative simultaneous estimation of water soluble vitamins, riboflavin, pyridoxine, cyanocobalamin and folic acid in nutraceutical products by HPLC. Open Anal. Chem. J. 3, 1–5 (2009)CrossRefGoogle Scholar
- 22.Adunola, A.T.; Chidimma, A.L.; Olatunde, D.S.; Peter, O.A.: Antibacterial activity of watermelon (Citrullus lanatus) seed against selected microorganisms. Afr. J. Biotechnol. 14, 1224–1229 (2015)CrossRefGoogle Scholar
- 23.Ghazghazi, H.; Miguel, M.G.; Hasnaoui, B.; Sebei, H.; Ksontini, M.; Figueiredo, A.C.; Pedro, L.G.; Barroso, J.G.: Phenols, essential oils and carotenoids of Rosa canina from Tunisia and their antioxidant activities. Afr. J. Biotechnol. 9, 2709–2716 (2010)Google Scholar
- 24.Marzoug, H.N.B.; Romdhane, M.; Lebrihi, A.; Mathieu, F.; Couderc, F.; Abderraba, M.; Bouajila, J.: Eucalyptus oleosa essential oils: chemical composition and antimicrobial and antioxidant activities of the oils from different plant parts (stems, leaves, flowers and fruits). Molecules 16, 1695–1709 (2011)CrossRefGoogle Scholar
- 25.Boira, H.; Blanquer, A.: Environmental factors affecting chemical variability of essential oils in Thymus piperella L. Biochem. Syst. Ecol. 26, 811–822 (1998)CrossRefGoogle Scholar
- 26.Curado, M.A.; Oliveira, C.B.; Jesus, J.G.; Santos, S.C.; Seraphin, J.C.; Ferri, P.H.: Environmental factors influence on chemical polymorphism of the essential oils of Lychnophora ericoides. Phytochemistry 67, 2363–2369 (2006)CrossRefGoogle Scholar
- 27.Padin, E.V.; Pose, G.N.; Pollio, M.L.: Antibacterial activity of Oleoresin from Aguaribay (Schinus molle L.). J. Food Technol 5, 5–8 (2007)Google Scholar
- 28.Aneja, K.R.; Joshi, R.: Evaluation of antimicrobial properties of fruit extracts of Terminalia chebula against dental caries pathogens. Jundishapur J. Microbiol. 2, 105–11 (2009)Google Scholar
- 29.Salazar-Aranda, R.; Pérez-Lopez, L.A.; Lopez-Arroyo, J.; Alanís-Garza, B.A.; Waksman de Torres, N.: Antimicrobial and antioxidant activities of plants from northeast of Mexico. Evid. Based Complement Altern. Med. 2011, 536139 (2011). https://doi.org/10.1093/ecam/nep127
- 30.Jain, S.C.; Pancholi, B.; Jain, R.: Antimicrobial, free radical scavenging activities and chemical composition of Peltophorum pterocarpum Baker ex K. Heyne stem extract. Der Pharma Chem. 4, 2073–2079 (2012)Google Scholar
- 31.Sudha, T.; Chidambarampillai, S.; Mohan, V.R.: GC–MS analysis of bioactive components of aerial parts of Fluggea leucopyrus Willd.(Euphorbiaceae). J. Appl. Pharm Sci. 3, 126–130 (2013)Google Scholar
- 32.Zouari, N.; Ayadi, I.; Fakhfakh, N.; Rebai, A.; Zouari, S.: Variation of chemical composition of essential oils in wild populations of Thymus algeriensis Boiss. et Reut., a North African endemic Species. Lipids Health Dis. 11, 28 (2012)CrossRefGoogle Scholar
- 33.Vlahakis, C.; Hazebroek, J.: Phytosterol accumulation in canola, sunflower, and soybean oils: effects of genetics, planting location, and temperature. J. Am. Oil Chem. Soc. 77, 49–53 (2000)CrossRefGoogle Scholar
- 34.Healton, E.B.; Savage, D.G.; Brust, J.C.; Garrett, T.J.; Lindenbaum, J.: Neurologic aspects of cobalamin deficiency. Medicine (Baltimore) 70, 229–245 (1991)CrossRefGoogle Scholar
- 35.Kwok, T.; Falconer-Smith, J.F.; Potter, J.F.; Ives, D.R.: Thiamine status of elderly patients with cardiac failure. Age Ageing 21, 67–71 (1992)CrossRefGoogle Scholar
- 36.Brady, J.A.; Rock, C.L.; Horneffer, M.R.: Thiamin status, diuretic medications, and the management of congestive heart failure. J. Am. Diet. Assoc. 95, 541–544 (1995)CrossRefGoogle Scholar
- 37.Swain, R.A.; St. Clair, L.: The role of folic acid in deficiency states and prevention of disease. J. Fam. Pract. 44, 138–145 (1997)Google Scholar
- 38.Schoenen, J.; Jacquy, J.; Lenaerts, M.: Effectiveness of high-dose riboflavin in migraine prophylaxis: a randomized controlled trial. Neurology 50, 466–470 (1998)CrossRefGoogle Scholar