Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 8, pp 6841–6850 | Cite as

Routing Protocols for D2D Communications with Adaptive Transmit Power

  • Nadhir Ben HalimaEmail author
  • Hatem Boujemâa
Research Article - Electrical Engineering
  • 20 Downloads

Abstract

In this article, we suggest routing protocols for device-to-device (D2D) communications with relays using an adaptive transmit power. The generated interference by D2D nodes to cellular base station is lower than interference threshold T. Optimal routing consists of activating the path with the highest end-to-end signal to interference plus noise ratio. One-hop routing selects the best relay at each hop. Suboptimal routing decomposes the network in many subnetworks where the best path in each subnetwork is activated.

Keywords

D2D communications Routing Relaying techniques Interference Amplify and forward 

Abbreviations

D2D

Device to device

BS

Base station

CU

Cellular user

OR

Optimal routing

SOR

Suboptimal routing

OHR

One-hop routing

List of symbols

\(P_{R_{k,j}}\)

Transmit power of relay \(R_{k,j}\)

\(E_{R_{k,j}}\)

Transmitted energy per symbol of relay \(R_{k,j}\)

T

Interference threshold

\(T_\mathrm{s}\)

symbol period

\(h_{R_{k,j}\mathrm{BS}}\)

channel coefficient between relay \(R_{k,j}\) and BS

\(\Gamma _{R_{k,j}R_{k+1,j}}\)

SINR between consecutive relays \(R_{k,j}\) and \(R_{k+1,j}\)

\(N_0\)

Power spectral density (PSD) of noise

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Min, H.; Seo, W.; Lee, J.; Park, S.; Hong, D.: Reliability improvement using receive mode selection in the device-to-device uplink period underlaying cellular networks. IEEE Trans. Wirel. Commun. 10(2), 413–418 (2011)CrossRefGoogle Scholar
  2. 2.
    Xu, W.; Liang, L.; Zhang, H.; Jin, S.; Li, J.C.F.; Lei, M.: Performance enhanced transmission in device-to-device communications: beamforming or interference cancellation? In: GLOBECOM (2012)Google Scholar
  3. 3.
    Janis, P.: Interference avoiding MIMO schemes for device-to-device radio underlaying cellular networks. In: PIMRC (2009)Google Scholar
  4. 4.
    Min, H.; Lee, J.; Park, S.; Hong, D.: Capcity enhancement using an interference limited area for device-to-device uplink underlaying cellular networks. IEEE Trans. Wirel. Commun. 10(12), 3995–4000 (2011)CrossRefGoogle Scholar
  5. 5.
    Xu, S., et al.: Effective interference cancellation scheme for device to device communication underlaying cellular networks. In: VTC (2010)Google Scholar
  6. 6.
    Xu, C.; Song, L.; Han, Z.; Zhao, Q.; Wang, X.; Cheng, X.; Jiao, B.: Efficiency resource allocation for device-to-device underlay communication systems: a reverse iterative combinatorial auction based approach. IEEE JSAC 31(9), 348–358 (2013)Google Scholar
  7. 7.
    Feng, D.; Lu, L.; Yuan-Wu, Y.; Li, G.Y.; Feng, G.; Li, S.: Device to device communications underlaying cellular networks. IEEE Trans. Commun. 61(8), 3541–3551 (2013)CrossRefGoogle Scholar
  8. 8.
    Phunchongharm, P.: Resource allocation for device to device communications underlaying LTE advanced networks. IEEE Wirel. Commun. 20, 91–100 (2013)CrossRefGoogle Scholar
  9. 9.
    Janis, P.; Koivunen, V.; Ribeiro, C.; Korhonen, J.; Doppler, K.; Hugl, K.: Interference aware resource allocation for device to device radio underlaying cellular networks. In: VTC Spring (2009)Google Scholar
  10. 10.
    Yu, C.H.: Resource sharing optimization for device-to-device communication underlaying cellular networks. IEEE Trans. Wirel. Commun. 10(8), 2752–2763 (2011)CrossRefGoogle Scholar
  11. 11.
    Xu, C.; Song, L.; Han, Z.; Zhao, Q.; Wang, X.; Jiao, B.: Interference aware resource allocation for device to device communications as an underlay using sequential second price auction. In: ICC (2012)Google Scholar
  12. 12.
    Zulhasnine, M.: Efficient resource allocation for device to device communication underlaying LTE network. In: IWCMC (2010)Google Scholar
  13. 13.
    Fodor, G.; Dahlman, E.; Mildh, G.; Parkvall, S.; Reider, N.; Miklos, G.; Turanyi, Z.: Design aspects of network assisted device to device communications. IEEE Commun. Mag. 50, 170–177 (2012)CrossRefGoogle Scholar
  14. 14.
    Wang, B.; Chen, L.; Chen, X.; Zhang, X.; Yang, D.: Resource allocation optimization for device to device communications underlaying cellular networks. In: VTC Spring (2011)Google Scholar
  15. 15.
    Zhang, R.; Cheng, X.; Yang, L.; Jiao, B.: Interference-aware graph based resource sharing for device-to-device communications underlaying cellular networks. In: Proceedings of IEEE WCNC, pp. 140–145 (2013)Google Scholar
  16. 16.
    Xu, C.; Song, L.; Han, Z.; Li, D.; Jiao, B.: Resource allocation using a reverse iterative combinatorial auction for device-to-device underlay cellular networks. In: IEEE GLOBECOM, pp. 4542–4547 (2012)Google Scholar
  17. 17.
    Asadi, A.; Wang, Q.; Mancuso, V.: A survey on device-to-device communication in cellular networks. ArXiv (2014)Google Scholar
  18. 18.
    Xing, H.; Hakola, S.: The investigation of power control schemes for a device to device communication integrated into OFDMA Cellular system. In: PIMRC (2010)Google Scholar
  19. 19.
    Yu, C.-H.; Tirkkonen, O.; Doppler, K.; Ribeiro, C.: On the performance of device to device underlay communication with simple power control. In: VTC (2009)Google Scholar
  20. 20.
    Yu, C.H.; Tirkkonen, O.; Doppler, K.; Ribeiro, C.: Power optimization of device to device communication underlaying cellular communication. In: ICC (2009)Google Scholar
  21. 21.
    Xiao, X.; Tao, X.; LuX, J.: A QOS aware power optimization scheme in OFDMA systems integrated device to device (D2D) communications. In: VTC (2011)Google Scholar
  22. 22.
    Doppler, K.; Yu, C.-H.; Ribeiro, C.B.; Janis, P.: Mode selection for Device to Device communication underlaying an LTE advanced network. In: WCNC (2010)Google Scholar
  23. 23.
    Doppler, K.; Rinne, M.P.; Janis, P.; Ribeiro, C.; Hugl, K.: Device to Device communication: functional prospects for LTE-advanced networks. In: ICC (2009)Google Scholar
  24. 24.
    Lei, L.: Operator controlled device to device communications in LTE advanced networks. IEEE Wirel. Commun. 19, 96–104 (2012)CrossRefGoogle Scholar
  25. 25.
    Doppler, K.; Rinne, M.; Wijting, C.; Ribeiro, C.B.; Hugl, K.: Device to device communications as an underlay to LTE advanced networks. IEEE Commun. Mag. 47, 42–48 (2009)CrossRefGoogle Scholar
  26. 26.
    Nader, M.: Device to device communication in 5G cellular networks: challenges, solutions and future directions. IEEE Commun. Mag. 52, 86–92 (2014)Google Scholar
  27. 27.
    Ma, X.; Yin, R.; Yu, G.; Zhang, Z.: A distributed relay selection method for relay assisted device-to-device communication system. In: Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Sydney, Australia (2012)Google Scholar
  28. 28.
    Xia, W.; Shao, S.; Sun, J.: Relay selection strategy for device-to-device communication. In: Proceedings of the IET International Conference on Information and Communications Technologies, Beijing, China, pp. 318–323 (2013)Google Scholar
  29. 29.
    Ni, Y.; Zhao, J.; Wang, Y.; Zhu, H.: Beamforming and interference cancellation for D2D communication assisted by two-way decode-and-forward relay node. China Commun. 15(3), 100–111 (2018)CrossRefGoogle Scholar
  30. 30.
    Pradhan, A.; Basu, S.; Sarkar, S.; Mitra, S.; Roy, S.D.: Implementation of relay hopper model for reliable communication of IoT devices in LTE environment through D2D link. In: 2018 10th International Conference on Communication Systems and Networks (COMSNETS), pp. 569–572 (2018)Google Scholar
  31. 31.
    Ateya, A.A.; Muthanna, A.; Koucheryavy, A.: 5G framework based on multi-level edge computing with D2D enabled communication. In: 2018 20th International Conference on Advanced Communication Technology (ICACT), pp. 1–1 (2018)Google Scholar
  32. 32.
    Yang, L.; Wu, D.; Cai, Y.: Social aware joint link and power allocation for D2D communication underlaying cellular networks. IET Commun. 12(5), 493–500 (2018)CrossRefGoogle Scholar
  33. 33.
    Liu, Y.; Wang, Y.; Sun, R.; Miao, Z.: Hierarchical power allocation algorithm for D2D-based cellular networks with heterogeneous statistical quality-of-service constraints. IET Commun. 12(5), 518–526 (2018)CrossRefGoogle Scholar
  34. 34.
    Li, X.; Shankaran, R.; Orgun, M.; Fang, G.; Xu, Y.: Resource allocation for underlay D2D communication with proportional fairness. IEEE Trans. Veh. Technol. PP(99), 1–1 (2018)Google Scholar
  35. 35.
    Xing, W.; Liu, F.; Wang, C.; Xiao, M.; Wang, P.: Multi-source network-coded D2D cooperative content distribution systems. J. Commun. Netw. 20(1), 69–84 (2018)CrossRefGoogle Scholar
  36. 36.
    Ahmed, M.; Shi, H.; Chen, X.; Li, Y.; Waqas, M.; Jin, D.: Socially-aware secrecy-ensured resource allocation in D2D underlay communication: an overlapping coalitional game scheme. IEEE Trans. Wirel. Commun. 17, 4118–4133 (2018)CrossRefGoogle Scholar
  37. 37.
    Gharbieh, M.; Bader, A.; El Sawy, H.; Yang, H.-C.; Alouini, M.-S.; Adinoyi, A.: Self-organized scheduling request for uplink 5G networks: a D2D clustering approach. IEEE Trans. Commun. (2018).  https://doi.org/10.1109/TCOMM.2018.2876008
  38. 38.
    Xing, H.; Valkama, M.; Renfors, M.: Resource management for an integrated OFDMA cellular system with MC-CDMA based D2D communications. In: 2018 15th International Symposium on Wireless Communication Systems (ISWCS), pp. 1–6 (2018)Google Scholar
  39. 39.
    Awan, Z.H.; Mathar, R.: Bounds on caching D2D networks with secure delivery. In: 15th International Symposium on Wireless Communication Systems (ISWCS), pp. 1–5 (2018)Google Scholar
  40. 40.
    Qiu, Y.; Ji, Z.; Zhu, Y.; Meng, G.; Xie, G.: Joint mode selection and power adaptation for D2D communication with reinforcement learning. In: 15th International Symposium on Wireless Communication Systems (ISWCS), pp. 1–6 (2018)Google Scholar
  41. 41.
    Ozbek, B.; Pischella, M.; Le Ruyet, D.: Message-passing algorithm for sum-rate maximization in multi-antenna underlay D2D communications. In: 15th International Symposium on Wireless Communication Systems (ISWCS), pp. 1–5 (2018)Google Scholar
  42. 42.
    Liao, Z.; Liang, J.; Feng, C.: Mobile relay deployment in multihop relay networks. Comput. Commun. 112(1), 14–21 (2017)CrossRefGoogle Scholar
  43. 43.
    Tirkolaee, E.B.; Hosseinabadi, A.A.R.; Soltani, M.; Sangaiah, A.K.; Wang, J.: A hybrid genetic algorithm for multi-trip green capacitated arc routing problem in the scope of urban services. Sustainability 10(5), 1366 (2018)CrossRefGoogle Scholar
  44. 44.
    Tu, Y.; Lin, Y.; Wang, J.; Kim, J.-U.: Semi-supervised learning with generative adversarial networks on digital signal modulation classification. Comput. Mater. Contin. 55(2), 243–254 (2018)Google Scholar
  45. 45.
    Wang, J.; Caoa, Y.; Li, B.; Hye-jin,; Lee, K.S.: Particle swarm optimization based clustering algorithm with mobile sink for WSNs. Future Gener. Comput. Syst. 76, 452–457 (2017)CrossRefGoogle Scholar
  46. 46.
    Wang, J.; Cao, J.; Ji, S.; Park, J.H.: Energy efficient cluster-based dynamic routes adjustment approach for wireless sensor networks with mobile sinks. J. Supercomput. 73(7), 3277–3290 (2017)CrossRefGoogle Scholar
  47. 47.
    Kim, J.; Molisch, A.: Quality-aware millimeter wave device-to-device multi-hop routing for 5G cellular networks. In: ICC (2014)Google Scholar
  48. 48.
    Laha, A.; Cao, X.; Shen, W.; Tian, X.; Cheng, Y.: An energy efficient routing protocol for device to device based multihop smartphone networks. In: ICC (2015)Google Scholar
  49. 49.
    Taha, C.; Kadoch, M.: Multipath routing algorithm for device-to-device communications for public safety over LTE heterogeneous networks. In: ICT-DM (2014)Google Scholar
  50. 50.
    Hasna, M.O.; Alouini, M.S.: Outage probability of multihop transmission over Nakagami fading channels. IEEE Commun. Lett. 7(5), 216–218 (2003)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.College of Computer Science and Engineering in YanbuTaibah UniversityMadinahSaudi Arabia
  2. 2.SUPCOM, COSIM LabTunisTunisia

Personalised recommendations