Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1671–1684 | Cite as

Modeling and Optimization of Anisotropic Viscoelastic Porous Structures Using CQBEM and Moving Asymptotes Algorithm

  • Mohamed Abdelsabour FahmyEmail author
Research Article - Mechanical Engineering
  • 92 Downloads

Abstract

The aim of this paper is to develop a novel numerical modeling optimization technique and implement it with the boundary element method (BEM) based on convolution quadrature method for studying optimization of anisotropic viscoelastic porous permeable structures. After applying the quadrature rule to the discretized boundary integral equation, a time stepping procedure based on the use of the linear multistep method is obtained. To obtain anisotropic fundamental solutions, the calculation of a double integral should be performed, but it increases the total computation time in the BEM. In order to overcome this problem and improve the computational efficiency of the formulation, our new proposed BEM technique is implemented. The method of implicit differentiation with respect to design variables has been implemented to calculate the displacements and pore pressure design sensitivities, and the effects of viscosity on these sensitivities are discussed. The resulting topology optimization problem has been solved using the method of moving asymptotes algorithm with adjoint variable method to optimize material distribution and find the influence of viscosity on the optimal design. The validity, efficiency and accuracy of the proposed BEM technique were confirmed by comparing obtained results for elliptical sandwich structure and multi-well reservoir with the corresponding results of finite difference method, lattice Boltzmann method and finite element method, which are special cases of our general and complex problem.

Keywords

Convolution quadrature boundary element method Numerical modeling Topology optimization Anisotropic viscoelasticity Porous structure 

List of symbols

A

\(\phi \left( {1+{\bar{Q}} /{\bar{R}} } \right) \) Biot’s coefficient

\(C_{ajlg} \)

Constant elastic moduli (GPa)

\({\bar{C}} _{ajlg} \left( s \right) \)

Complex viscoelastic moduli in Laplace domain

\(C_{ajlg}^0 \)

Instantaneous stiffness tensor

\(C_{ajlg}^\infty \)

Equilibrium stiffness tensor

\({\mathbb {C}}\left( \tau \right) \)

Source term

\(c_{aj} \) and c

Free terms

\(c_m\)

\(\sqrt{\lambda _m /\rho }\) phase velocities

\(E_{jm} \)

Eigenvectors of \(\varGamma _{jl} \)

\(F_a \)

Bulk body forces \((\hbox {N})\)

k

Permeability \((\hbox {m}^{4}/\hbox {N s})\)

\(k_m\)

\(s/c_m \) wave numbers

\({\bar{k}} \)

Fixed value

l

Average length of edges for all the boundary elements

N

Number of design variables

\(N_e \)

Elements set whose distance from e is less than R

n

\(\left( {n_1,n_2,n_3 } \right) \) direction of wave propagation

p

Pore pressure (kPa)

\({\bar{Q}},{\bar{R}} \)

Solid–fluid coupling parameters

R

Minimum distance between considered boundary element and collocation point

r

Residual of the state equation

\(q_a \)

Fluid specific flux \((\hbox {m}^{3}/\hbox {s})\)

\(u_a \)

Solid displacement \((\hbox {m})\)

\(v_a \)

Fluid–solid displacements \((\hbox {m})\)

\(\upsilon _i\)

Element volume

V

\(V^{\mathrm{f}}+V^{\mathrm{s}}\) bulk volume \((\hbox {m}^{3})\)

\(V^{\mathrm{f}}\)

Fluid volume \((\hbox {m}^{3})\)

\(V^{\mathrm{s}}\)

Solid volume \((\hbox {m}^{3})\)

\(\fancyscript{w}\left( {\fancyscript{x}_i,~\fancyscript{x}_e } \right) \)

\(R-\Vert \fancyscript{x}_i -\fancyscript{x}_e \Vert \) weighting function

\(\fancyscript{x}_{{e}} \)

Corresponding coordinates of element e

\(\varGamma _{jl}\)

\({\bar{C}} _{ajlg} n_a n_g \) Christoffel tensor

\(\gamma \left( z \right) \)

Stability polynomial

\(\bar{\bar{\gamma }}\)

Solid volume fraction

\(\delta _{aj} \)

Kronecker delta function

\(\varepsilon _{kk} \)

Volumetric strain of the solid skeleton

\(\zeta \)

Fluid volume variation \((\hbox {m}^{3})\)

\(\lambda \)

Adjoint variable vector

\(\lambda _m \)

Eigenvalues of \(\varGamma _{jl} \)

\({\mu }\)

Shape factor

\(\xi _i^{\left( e \right) } \)

Coordinates of the corresponding corner nodes

\(\rho \)

\(\rho _\mathrm{s} \left( {1-\phi } \right) +\phi \rho _\mathrm{f} \) bulk density (\(\hbox {kg}/\hbox {m}^{3})\)

\(\rho _\mathrm{s}\)

\(\mu \phi \rho _{{\mathcal {F}}} \) solid density (\(\hbox {kg}/\hbox {m}^{3})\)

\(\rho _{{\mathcal {F}}} \)

Fluid density (\(\hbox {kg}/\hbox {m}^{3})\)

\({\bar{\rho }} _e \)

Standard filter densities

\(\sigma _{aj} \)

Total stress tensor (\(\hbox {N}/\hbox {m}^{2})\)

\(\tau \)

Time \(\left( \hbox {s} \right) \)

\(\phi \)

\(\frac{V^{\mathrm{f}}}{V}\) porosity

\(\varphi \)

Interpolation function

\(\varOmega \)

Region bounded by boundary \(\varGamma \)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nayak, M.K.: Chemical reaction effect on MHD viscoelastic fluid over a stretching sheet through porous medium. Meccanica 51, 1699–1711 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Nayak, M.K.; Dash, G.C.; Singhc, L.P.: Steady MHD flow and heat transfer of a third grade fluid in wire coating analysis with temperature dependent viscosity. Int. J. Heat Mass Transf. 79, 1087–1095 (2014)CrossRefGoogle Scholar
  3. 3.
    Nayak, M.K.; Akbar, N.S.; Pandey, V.S.; Khan, Z.H.; Tripathie, D.: 3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation. Powder Technol. 315, 205–215 (2017)CrossRefGoogle Scholar
  4. 4.
    Nayak, M.K.; Dash, G.C.; Singh, L.P.: Unsteady radiative MHD free convective flow and mass transfer of a viscoelastic fluid past an inclined porous plate. Arabian J. Sci. Eng. 40, 3029–3039 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Nayak, M.K.; Akbar, N.S.; Tripathi, D.; Khan, Z.H.; Pandey, V.S.: MHD 3D free convective flow of nanofluid over an exponentially stretching sheet with chemical reaction. Adv. Powder Technol. 28, 2159–2166 (2017)CrossRefGoogle Scholar
  6. 6.
    Nayak, M.K.: MHD 3D flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radiation and viscous dissipation. Int. J. Mech. Sci. 124–125, 185–193 (2017)CrossRefGoogle Scholar
  7. 7.
    Hoshoudy, G.A.: Effects of general rotation and a horizontal magnetic field on the Rayleigh–Taylor instability of three-fluid layer in porous media. Arabian J. Sci. Eng. 36, 105–119 (2011)CrossRefzbMATHGoogle Scholar
  8. 8.
    Fahmy, M.A.: Numerical modeling of coupled thermoelasticity with relaxation times in rotating FGAPs subjected to a moving heat source. Phys. Sci. Int. J. 9, 1–13 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fahmy, M.A.: Computerized Boundary Element Solutions for Thermoelastic Problems: Applications to Functionally Graded Anisotropic Structures. LAP Lambert Academic Publishing, Saarbrücken (2017)Google Scholar
  10. 10.
    Fahmy, M.A.: Boundary Element Computation of Shape Sensitivity and Optimization: Applications to Functionally Graded Anisotropic Structures. LAP Lambert Academic Publishing, Saarbrücken (2017)Google Scholar
  11. 11.
    Fahmy, M.A.: The effect of anisotropy on the structure optimization using golden-section search algorithm based on BEM. J. Adv. Math. Comput. Sci. 25(4), 1–18 (2017)CrossRefGoogle Scholar
  12. 12.
    Fahmy, M.A.: DRBEM sensitivity analysis and shape optimization of rotating magneto-thermo-viscoelastic FGA structures using golden-section search algorithm based on uniform bicubic B-splines. J. Adv. Math. Comput. Sci. 25(6), 1–20 (2017)CrossRefGoogle Scholar
  13. 13.
    Fahmy, M.A.: A predictor–corrector time-stepping DRBEM for shape design sensitivity and optimization of multilayer FGA structures. Transylv. Rev. XXV, 5369–5382 (2017)Google Scholar
  14. 14.
    Fahmy, M.A.: Implicit–explicit time integration DRBEM for generalized magneto-thermoelasticity problems of rotating anisotropic viscoelastic functionally graded solids. Eng. Anal. Bound. Elem. 37, 107–115 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fahmy, M.A.: Generalized magneto-thermo-viscoelastic problems of rotating functionally graded anisotropic plates by the dual reciprocity boundary element method. J. Therm. Stress. 36, 1–20 (2013)CrossRefGoogle Scholar
  16. 16.
    Fahmy, M.A.: A three-dimensional generalized magneto-thermo-viscoelastic problem of a rotating functionally graded anisotropic solids with and without energy dissipation. Numer. Heat Transf. Part A Appl. 63, 713–733 (2013)CrossRefGoogle Scholar
  17. 17.
    Fahmy, M.A.: A Computerized DRBEM model for generalized magneto-thermo-visco-elastic stress waves in functionally graded anisotropic thin film/substrate structures. Latin Am. J. Solids Struct. 11, 386–409 (2014)CrossRefGoogle Scholar
  18. 18.
    von Terzaghi, K.: Die Berechnung der DurchHissigkeit des Tones aus dem Verlauf der hydromechanischen Spannungserscheinungen. Sitz. Akad. Wiss. Wien Math.-Naturwissenschaftlichen Kl. 132, 125–138 (1923)Google Scholar
  19. 19.
    Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)CrossRefzbMATHGoogle Scholar
  20. 20.
    Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Biot, M.A.: Theory of deformation of a porous viscoelastic anisotropic solid. J. Appl. Phys. 27, 459–467 (1956)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range. J. Acoust. Soc. Am. 28, 168–178 (1956)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28, 179–191 (1956)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Corman, R.E.; Rao, L.; Bharadwaj, N.A.; Allison, J.T.; Ewoldt, R.H.: Setting material function design targets for linear viscoelastic materials and structures. J. Mech. Des. 138, 051402 (2016)CrossRefGoogle Scholar
  25. 25.
    Nørgaard, S.; Sigmund, O.; Lazarov, B.: Topology optimization of unsteady flow problems using the lattice Boltzmann method. J. Comput. Phys. 307, 291–307 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    El-Naggar, A.M.; Abd-Alla, A.M.; Fahmy, M.A.; Ahmed, S.M.: Thermal stresses in a rotating non-homogeneous orthotropic hollow cylinder. Heat Mass Transf. 39, 41–46 (2002)CrossRefGoogle Scholar
  27. 27.
    Abd-Alla, A.M.; El-Naggar, A.M.; Fahmy, M.A.: Magneto-thermoelastic problem in non-homogeneous isotropic cylinder. Heat Mass Transf. 39, 625–629 (2003)CrossRefGoogle Scholar
  28. 28.
    Chen, T.C.; Weng, C.I.: Generalized coupled transient thermoelastic plane problems by Laplace transform/finite element method. ASME J. Appl. Mech. 55, 377–382 (1988)CrossRefzbMATHGoogle Scholar
  29. 29.
    Fahmy, M.A.; El-Shahat, T.M.: The effect of initial stress and inhomogeneity on the thermoelastic stresses in a rotating anisotropic solid. Arch. Appl. Mech. 78, 431–442 (2008)CrossRefzbMATHGoogle Scholar
  30. 30.
    Fahmy, M.A.: A time-stepping DRBEM for magneto-thermo-viscoelastic interactions in a rotating nonhomogeneous anisotropic solid. Int. J. Appl. Mech. 3, 1–24 (2011)CrossRefGoogle Scholar
  31. 31.
    Fahmy, M.A.: A time-stepping DRBEM for the transient magneto-thermo-visco-elastic stresses in a rotating non-homogeneous anisotropic solid. Eng. Anal. Bound. Elem. 36, 335–345 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Fahmy, M.A.: Transient magneto-thermoviscoelastic plane waves in a non-homogeneous anisotropic thick strip subjected to a moving heat source. Appl. Math. Model. 36, 4565–4578 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Fahmy, M.A.: The effect of rotation and inhomogeneity on the transient magneto-thermoviscoelastic stresses in an anisotropic solid. ASME J. Appl. Mech. 79, 051015 (2012)CrossRefGoogle Scholar
  34. 34.
    Fahmy, M.A.: Transient magneto-thermo-elastic stresses in an anisotropic viscoelastic solid with and without moving heat source. Numer. Heat Transf. Part A Appl. 61, 547–564 (2012)CrossRefGoogle Scholar
  35. 35.
    Wiebe, T.; Antes, H.: A time domain integral formulation of dynamic poroelasticity. Acta Mech. 90, 125–137 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Schanz, M.: Application of 3D time domain boundary element formulation to wave propagation in poroelastic solids. Eng. Anal. Bound. Elem. 25, 363–376 (2001)CrossRefzbMATHGoogle Scholar
  37. 37.
    Fahmy, M.A.: Shape design sensitivity and optimization of anisotropic functionally graded smart structures using bicubic B-splines DRBEM. Eng. Anal. Bound. Elem. 87, 27–35 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Fahmy, M.A.: Shape design sensitivity and optimization for two-temperature generalized magneto-thermoelastic problems using time-domain DRBEM. J. Therm. Stress. 41, 119–138 (2018)CrossRefGoogle Scholar
  39. 39.
    Matsumoto, T.; Tanaka, M.; Ogawa, Y.: A simple technique for efficient evaluations of boundary integrals of time-harmonic elastodynamic BEM analyses for anisotropic solids. In: Bathe, K.J. (ed.) Proceedings Second MIT Conference on Computational Fluid and Solid Mechanics, pp. 2071–2073. Elsevier, Oxford (2003)Google Scholar
  40. 40.
    Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52, 129–145 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Lubich, C.: Convolution quadrature and discretized operational calculus II. Numer. Math. 52, 413–425 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Tan, C.L.; Shiah, Y.C.; Wang, C.Y.: Boundary element elastic stress analysis of 3D generally anisotropic solids using fundamental solutions based on Fourier series. Int. J. Solids Struct. 50, 2701–2711 (2013)CrossRefGoogle Scholar
  43. 43.
    Detournay, E.; Cheng, A.H.D.: Fundamentals of poroelasticity. In: Hudson, J.A. (ed.) Comprehensive Rock Engineering: Principles, Practice & Projects, pp. 113–171. Pergamon Press, Oxford (1993)Google Scholar
  44. 44.
    Abousleiman, Y.; Cheng, A.H.D.; Roegiers, J.C.: Boundary element method for visco-poroelasticity with rock mechanics applications. In: Brebbia, C.A., et al. (eds.) Boundary Element Technology VII, pp. 173–183. Computational Mechanics Publications, Southampton (1992)CrossRefGoogle Scholar
  45. 45.
    Bonnet, G.; Auriault, J.L.: Dynamics of saturated and deformable porous media: homogenization theory and determination of the solid–liquid coupling coefficients. In: Boccara, N., Daoud, M. (eds.) Physics of Finely Divided Matter, pp. 306–316. Springer, Berlin (1985)CrossRefGoogle Scholar
  46. 46.
    Wang, C.Y.; Achenbach, J.D.: Elastodynamic fundamental solution for anisotropic solids. Geophys. J. Int. 118, 384–392 (1994)CrossRefGoogle Scholar
  47. 47.
    Wang, C.Y.; Achenbach, J.D.: Three-dimensional time-harmonic elastodynamic Green’s functions for anisotropic solids. Proc. R. Soc. A 449, 441–458 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Andreasen, C.S.; Sigmund, O.: Topology optimization of fluid–structure-interaction problems in poroelasticity. Comput. Methods Appl. Mech. Eng. 258, 55–62 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Tortorelli, D.A.; Lu, S.C.Y.; Haber, R.B.: Design sensitivity analysis for elastodynamic systems. Mech. Struct. Mach. 18, 77–106 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Svanberg, K.: The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Bourdin, B.: Filters in topology optimization. Int. J. Numer. Methods Eng. 50, 2143–2158 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Igumnov, L.A.; Markov, I.P.: Boundary-element modeling of three-dimensional anisotropic viscoelastic solids. In: Parinov, I.A., Chang, S.H., Topolov, V.Y. (eds.) Advanced Materials: Manufacturing, Physics, Mechanics and Applications, pp. 517–526. Springer, Basel (2016)CrossRefGoogle Scholar
  53. 53.
    Itzá, R.; Viveros, U.I.; Parra, J.O.: Optimal implicit 2-D finite differences to model wave propagation in poroelastic media. Geophys. J. Int. 206, 1111–1125 (2016)CrossRefGoogle Scholar
  54. 54.
    Nordström, J.; Gong, J.; van der Weide, E.; Svärd, M.: A stable and conservative high order multi-block method for the compressible Navier–Stokes equations. J. Comput. Phys. 228, 9020–9035 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Yin, H.J.; Liu, Z.L.; Fu, C.Q.; Wang, J.: Boundary element method for average pressure calculation of complex boundary reservoir. J. Hydrodyn. 18, 274–278 (2006)CrossRefGoogle Scholar
  56. 56.
    Yin, X.; Zhang, J.: An improved bounce-back scheme for complex boundary conditions in lattice Boltzmann method. J. Comput. Phys. 231, 4295–4303 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Li, Z.; Wang, X.; Gu, J.; Ruan, S.; Shen, C.; Lyu, Y.; Zhao, Y.: Topology Optimization for the design of conformal cooling system in thin-wall injection molding based on BEM. Int. J. Adv. Manuf. Technol. 94, 1041–1059 (2018)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Jamoum University CollegeUmm Al-Qura UniversityJamoumm, MakkahSaudi Arabia
  2. 2.Faculty of Computers and InformaticsSuez Canal UniversityIsmailiaEgypt

Personalised recommendations