Arabian Journal for Science and Engineering

, Volume 44, Issue 8, pp 6827–6840 | Cite as

Implementation of Closed-Loop Control of NSC-Drive with Reactive Power Compensation

  • Chaitanya JibhakateEmail author
  • Madhuri Chaudhari
  • Mohan Renge
Research Article - Electrical Engineering


This paper presents a closed-loop control scheme of the AC–DC–AC nine switch converter (NSC) with induction motor operated under dynamic loading conditions. In industries, induction motors are widely used which are operated at lagging power factor and different loading conditions. The electrical distribution company demands high power factor operation, and it gives benefits to the consumer on operating a system closer to unity. The scope of this paper is to control active and reactive power flow between NSC-drive and utility within NSC converter operating constraints. The control scheme is developed such that the active power required for the induction motor is directly transferred from the utility without affecting DC-link voltage. Also, the NSC with induction motor is used to operate at unity power factor and even at leading power factor. On operating NSC at desired leading power factor, the required reactive power at the point of common coupling can be compensated. The proposed control algorithm is implemented in MATLAB software as well as in the hardware. The 5 KVA prototype of NSC is developed in the laboratory. Software and hardware results confirmed the practicability of the proposed control technique.


Digital signal controller Nine switch converter Twelve switch converter Induction motor Reactive power 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Norambuena, M.; Kouro, S.; Dieckerhoff, S.; Rodriguez, J.: Reduced multilevel converter: a novel multilevel converter with a reduced number of active switches. IEEE Trans. Ind. Electron. 65, 3636–3645 (2018)CrossRefGoogle Scholar
  2. 2.
    Baranwal, R.; Iyer, K.; Basu, K.; Castelino, G.; Ned, M.: A reduced switch count single stage three-phase bidirectional rectifier with high frequency isolation. IEEE Trans. Power Electron. PP(99), 1–1 (2017)Google Scholar
  3. 3.
    Alias, A.; Rahim, N.A.; Hussain, M.A.: DSP-based modified SPWM switching technique with two-degrees-of-freedom voltage control for three-phase AC–DC buck converter. Arab. J. Sci. Eng. 39(11), 8001–8013 (2014)CrossRefGoogle Scholar
  4. 4.
    Renge, M.; Suryawanshi, H.; Chaudhari, M.: Digitally implemented novel technique to approach natural sampling SPWM. EPE J. 20, 13–20 (2010)CrossRefGoogle Scholar
  5. 5.
    Caruso, M.; Di Tommaso, A.O.; Genduso, F.; Miceli, R.; Galluzzo, G.R.: A DSP-based resolver-to-digital converter for high-performance electrical drive applications. IEEE Trans. Ind. Electron. 63(7), 4042–4051 (2016)CrossRefGoogle Scholar
  6. 6.
    Harkare, C.; Harkare, H.: Design and development of a switched reluctance motor and dsPIC based drive. In: 2nd International Conference for Convergence in Technology (I2CT), pp. 960–964 (2017)Google Scholar
  7. 7.
    Friedli, T.; Kolar, J.W.; Rodriguez, J.; Wheeler, P.W.: Comparative evaluation of three-phase AC–AC matrix converter and voltage DC-link back-to-back converter systems. IEEE Trans. Ind. Electron. 59(12), 4487–4510 (2012)CrossRefGoogle Scholar
  8. 8.
    Metidji, T.N.; Rekioua, B.: A fixed switching frequency direct torque control strategy for induction motor drives using indirect matrix converter. Arab. J. Sci. Eng. 39(3), 2001–2011 (2014)CrossRefGoogle Scholar
  9. 9.
    Kolar, J.W.; Schafmeister, F.; Round, S.D.; Ertl, H.: Novel three-phase AC–AC sparse matrix converters. IEEE Trans. Power Electron. 22(5), 1649–1661 (2007)CrossRefGoogle Scholar
  10. 10.
    Kolar, J.W.; Friedli, T.; Rodriguez, J.; Wheeler, P.W.: Review of three-phase PWM AC–AC converter topologies. IEEE Trans. Ind. Electron. 58(11), 4988–5006 (2011)CrossRefGoogle Scholar
  11. 11.
    Sandoval, J.; Krishnamoorthy, H.; Enjeti, P.; Choi, S.: Reduced active switch front-end multipulse rectifier with medium-frequency transformer isolation. IEEE Trans. Power Electron. J. 32(10), 7458–7468 (2017)CrossRefGoogle Scholar
  12. 12.
    Liu, C.; Wu, B.; Zargari, N.R.; Xu, D.; Wang, J.: A novel three-phase three-leg AC/AC converter using nine IGBTs. IEEE Trans. Power Electron. 24(5), 1151–1160 (2009)CrossRefGoogle Scholar
  13. 13.
    Liu, X.; Wang, P.; Loh, P.C.; Blaabjerg, F.: A compact three-phase single-input/dual-output matrix converter. IEEE Trans. Ind. Electron. 59(1), 6–16 (2012)CrossRefGoogle Scholar
  14. 14.
    Dehghan, S.M.; Mohamadian, M.; Yazdian, A.; Ashrafzadeh, F.: A dual-input dual-output Z-source inverter. IEEE Trans. Power Electron. 25(2), 360–368 (2010)CrossRefGoogle Scholar
  15. 15.
    Liu, X.; Loh, P.C.; Wang, P.; Blaabjerg, F.: A direct power conversion topology for grid integration of hybrid AC/DC energy resources. IEEE Trans. Ind. Electron. 60(12), 5696–5707 (2013)CrossRefGoogle Scholar
  16. 16.
    Diab, M.S.; Elserougi, A.A.; Abdel-Khalik, A.S.; Massoud, A.M.; Ahmed, S.: A nine-switch-converter-based integrated motor drive and battery charger system for EVs using symmetrical six-phase machines. IEEE Trans. Ind. Electron. 63(9), 5326–5335 (2016)CrossRefGoogle Scholar
  17. 17.
    Dehghan, S.M.; Mohamadian, M.; Yazdian, A.: Hybrid electric vehicle based on bidirectional Z-source nine-switch inverter. IEEE Trans. Veh. Technol. 59(6), 2641–2653 (2010)CrossRefGoogle Scholar
  18. 18.
    Liu, Congwei; Wu, Bin; Zargari, N.; Xu, D.: A novel nine-switch PWM rectifier-inverter topology for three-phase UPS applications. In: European Conference on Power Electronics and Applications, pp. 1–10 (2007)Google Scholar
  19. 19.
    Loh, P.C.; Zhang, L.; Gao, F.: Compact integrated energy systems for distributed generation. IEEE Trans. Ind. Electron. 60(4), 1492–1502 (2013)CrossRefGoogle Scholar
  20. 20.
    Wen, G.; Chen, Y.; Zhong, Z.; Kang, Y.: Dynamic voltage and current assignment strategies of nine-switch-converter-based DFIG wind power system for low-voltage ride-through (LVRT) under symmetrical grid voltage dip. IEEE Trans. Ind. Appl. 52(4), 3422–3434 (2016)CrossRefGoogle Scholar
  21. 21.
    Qin, Z.; Loh, P.C.; Blaabjerg, F.: Application criteria for nine-switch power conversion systems with improved thermal performance. IEEE Trans. Power Electron. 30(8), 4608–4620 (2015)CrossRefGoogle Scholar
  22. 22.
    Ali, K.; Das, P.; Panda, S.K.: A special application criterion of nine-switch converter with reduced conduction loss. IEEE Trans. Ind. Electron. 99, 31–36 (2017)Google Scholar
  23. 23.
    Zhang, L.; Loh, P.C.; Gao, F.: An integrated nine-switch power conditioner for power quality enhancement and voltage sag mitigation. IEEE Trans. Power Electron. 27(3), 1177–1190 (2012)CrossRefGoogle Scholar
  24. 24.
    Veas, D.R.; Dixon, J.W.; Ooi, B.-T.: A novel load current control method for a leading power factor voltage source PWM rectifier. IEEE Trans. Power Electron. 9(2), 153–159 (1994)CrossRefGoogle Scholar
  25. 25.
    Dixon, J.; Moran, L.; Rodriguez, J.; Domke, R.: Reactive power compensation technologies: state-of-the-art review. Proc. IEEE 93(12), 2144–2164 (2005)CrossRefGoogle Scholar
  26. 26.
    Shitole, A.B.; Suryawanshi, H.M.; Talapur, G.G.; Sathyan, S.; Ballal, M.S.; Borghate, V.B.; Ramteke, M.R.; Chaudhari, M.A.: Grid interfaced distributed generation system with modified current control loop using adaptive synchronization technique. IEEE Trans. Ind. Inform. 13(5), 2634–2644 (2017)CrossRefGoogle Scholar
  27. 27.
    da Silva, C.H.; Pereira, R.R.; da Silva, L.E.B.; Lambert-Torres, G.; Bose, B.K.; Ahn, S.U.: A digital PLL scheme for three-phase system using modified synchronous reference frame. IEEE Trans. Ind. Electron. 57(11), 3814–3821 (2010)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentVisvesvaraya National Institute of TechnologyNagpurIndia
  2. 2.Electrical Engineering DepartmentRCOEMNagpurIndia

Personalised recommendations