Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 663–671 | Cite as

Important Paradigms of the Thermoelastic Waves

  • Ambreen Afsar Khan
  • Ayesha SohailEmail author
  • O. A. Bég
  • Rabia Tariq
Research Article - Physics


This paper is devoted to the investigation of the propagation of magneto-thermoelastic waves in a rotating monoclinic system. The system is electrically conducting in the presence of an applied magnetic field. A general dispersion relation is obtained for magneto-thermoelastic waves. The propagation of wave produced two elastic waves and two thermal waves. It is found that the elastic waves depend on the applied magnetic field and the rotational frequency, where the thermal waves are independent of these effects. The numerical simulations are presented in this article to support the findings.


Dispersion relation Thermoelastic waves Rotational frequency Monoclinic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ezzat, M.A.: State space approach to solids and fluids. Can. J. Phys. 86(11), 1241–1250 (2008)CrossRefzbMATHGoogle Scholar
  2. 2.
    Ezzat, M.A.; El-Bary, A.A.: Application of fractional order theory of magneto-thermoelasticity to an infinite perfect conducting body with a cylindrical cavity. Microsyst. Technol. 23(7), 2447–2458 (2017)CrossRefGoogle Scholar
  3. 3.
    Arshad, S.; Siddiqui, A.M.; Sohail, A.; Maqbool, K.; Li, Z.: Comparison of optimal homotopy analysis method and fractional homotopy analysis transform method for the dynamical analysis of fractional order optical solitons. Adv. Mech. Eng. 9(3), 1687814017692946 (2017)CrossRefGoogle Scholar
  4. 4.
    Abbas, I.A.; Abo-Dahab, S.M.: On the numerical solution of thermal shock problem for generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity. J. Comput. Theor. Nanosci. 11(3), 607–618 (2014)CrossRefGoogle Scholar
  5. 5.
    Wajid, H.A.; Sohail, A.: Compact modified implicit finite element schemes for wave propagation problems with superior dispersive properties. Arab. J. Sci. Eng. 41(11), 4613–4624 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Sohail, A.; Rees, J.M.; Zimmerman, W.B.: Analysis of capillary-gravity waves using the discrete periodic inverse scattering transform. Colloids Surf. A Physicochem. Eng. Asp. 391(1–3), 42–50 (2011)CrossRefGoogle Scholar
  7. 7.
    Cherifi, R.O.; Ivanovskaya, V.; Phillips, L.C.; Zobelli, A.; Infante, I.C.; Jacquet, E.; Garcia, V.; Fusil, S.; Briddon, P.R.; Guiblin, N.; Mougin, A.: Electric-field control of magnetic order above room temperature. Nat. Mater. 13(4), 345 (2014)CrossRefGoogle Scholar
  8. 8.
    Zhdanov, V.M.: Transport Processes in Multicomponent Plasma. CRC Press, Boca Raton (2014)CrossRefGoogle Scholar
  9. 9.
    Kittel, C.; McEuen, P.; McEuen, P.: Introduction to Solid State Physics, pp. 323–324. Wiley, New York (1996)Google Scholar
  10. 10.
    Han, T.; Bai, X.; Gao, D.; Thong, J.T.; Li, B.; Qiu, C.W.: Experimental demonstration of a bilayer thermal cloak. Phys. Rev. Lett. 112(5), 054302 (2014)CrossRefGoogle Scholar
  11. 11.
    Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lord, H.W.; Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)CrossRefzbMATHGoogle Scholar
  13. 13.
    Green, A.E.; Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A 432(1885), 171–194 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Green, A.E.; Naghdi, P.M.: An unbounded heat wave in an elastic solid. J. Therm. Stresses 15, 253–264 (1992)CrossRefGoogle Scholar
  15. 15.
    Green, A.E.; Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Knopoff, L.: The interaction between elastic wave motions and a magnetic field in electrical conductors. J. Geophys. Res. 60(4), 441–456 (1955)CrossRefGoogle Scholar
  17. 17.
    Kaliski, S.; Petykiewicz, J.: Equation of motion coupled with the field of temperature in a magnetic field involving mechanical and electrical relaxation for isotropic bodies. Proc. Vib. Probl. 4, 1–12 (1959)Google Scholar
  18. 18.
    Paria, G.: On magneto-thermo-elastic plane waves. Math. Proc. Camb. Philos. Soc. 58(3), 527–531 (1962)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Purushothama, C.M.: Magneto-thermo-elastic plane waves. Math. Proc. Camb. Philos. Soc. 61(4), 939–944 (1965)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Singh, B.; Yadav, A.K.: Plane waves in a rotating monoclinic magnetothermoelastic medium. J. Eng. Phys. Thermophys. 89(2), 428–440 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Landersj, C.; Hg, C.; Maliniak, A.; Widmalm, G.: NMR investigation of a tetrasaccharide using residual dipolar couplings in dilute liquid crystalline media: effect of the environment. J. Phys. Chem. B 104(23), 5618–5624 (2000)CrossRefGoogle Scholar
  22. 22.
    Chattopadhyay, A.; Gupta, S.; Singh, A.K.; Sahu, S.A.: Propagation of shear waves in an irregular magnetoelastic monoclinic layer sandwiched between two isotropic half-spaces. Int. J. Eng. Sci. Technol. 1(1), 228–244 (2009)Google Scholar
  23. 23.
    Alfven, H.: On existence of electromagnetic-hydrodynamic waves: Ark Mat Astron Fys A29, 1–7 (1942)Google Scholar
  24. 24.
    Achenbach, J.D.: Wave Propagation in Elastic Solids, vol. 16. North Holland Series in Applied Mathematics and MechanicsNorth Holland, Amsterdam (1987)zbMATHGoogle Scholar
  25. 25.
    Lide, D.R.: Magnetic susceptibility of the elements and inorganic compounds. CRC Handb. Chem. Phys. 86, 130–135 (2005)Google Scholar
  26. 26.
    Khan, A.A.; Zaman, A.; Yaseen, S.: Impact of two relaxation times on thermal, P and SV waves at interface with magnetic field and temperature dependent elastic moduli. Results Phys. 8, 324–335 (2018)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsInternational Islamic UniversityIslamabadPakistan
  2. 2.Department of MathematicsCOMSATS University IslamabadLahorePakistan
  3. 3.Fluid Mechanics, Bio-Propulsion and Nano-Mechanics, Aeronautical and Mechanical Engineering Department, School of Computing, Science and Engineering, G77, Newton BuildingUniversity of SalfordManchesterUK

Personalised recommendations