Advertisement

Synthesis and Application of Cu-X zeolite for Removal of Antibiotic from Aqueous Solution: Process Optimization Using Response Surface Methodology

  • Asma Rahimi
  • Behrouz Bayati
  • Mehrdad Khamforoush
Research Article - Chemical Engineering
  • 2 Downloads

Abstract

13X zeolite was synthesized for removal of tetracycline from aqueous solution. To improve the removal efficiency, FAU zeolite was exposed to ion exchange process with \(\hbox {Cu}^{+2}\). The experiments were designed by the Design-Expert 7.0.0 software. The effect of experimental parameters including initial tetracycline (TC) concentration (50, 156.5, 525, 893.5, 1000 ppm) \(\hbox {Cu}^{+2}\) dosages (0, 0.3, 1.3, 2.2, 3 g/g) solution pH (2, 3, 6.5, 10, 11) and contact time (20, 34.6, 85, 135.4 min) was evaluated on TC removal efficiency. For minimizing the number of experiments for a complete evaluation, response surface methodology and central composite design were applied by means of Design-Expert 7.0.0 software. Results revealed that FAU zeolite adsorbent was effective in removal of tetracycline, where the removal efficiency was 85%. In fact, by increasing initial TC concentration from 156.5 to 890 mg/L, the removal efficiency was increased, while further increase in initial TC concentration over 890 mg/L did not cause a significant enhancement in its removal efficiency. Amount of exchanged Cu to 1.75 g/g had a positive effect on the removal efficiency but in over 1.75 g/g dosages, the removal efficiency showed a decreasing trend. The Design-Expert 7.0.0 software reported that the optimal operating conditions are TC concentration—810.5 ppm, \(\hbox {Cu}^{+2}\) dosages—0.6 g/g, solution pH—5.3, and contact time—113.6 min. The adsorption isotherms were fitted by Sips and Freundlich and Redlich–Peterson models. Finally, the adsorption kinetics were also studied by pseudo-second-order equation.

Keywords

Adsorption Tetracycline FAU zeolite Wastewater Parametric effect Experimental design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chea, V.; Paolucci-Jeanjean, D.; Belleville, M.P.; Sanchez, J.: Optimization and characterization of an enzymatic membrane for the degradation of phenolic compounds. Catal. Today 193, 49–56 (2012)CrossRefGoogle Scholar
  2. 2.
    Alsager, O.A.; Alnajrani, M.N.; Abuelizz, H.A.; Aldaghmani, I.A.: Removal of antibiotics from water and waste milk by ozonation: kinetics, byproducts, and antimicrobial activity. Ecotoxicol. Environ. Saf. 158, 114–122 (2018)CrossRefGoogle Scholar
  3. 3.
    Feng, L.; Casas, M.E.; Ottosen, L.D.M.; Møller, H.B.; Bester, K.: Removal of antibiotics during the anaerobic digestion of pig manure. Sci. Tot. Environ. 603–604, 219–225 (2017)CrossRefGoogle Scholar
  4. 4.
    Ali, Imran; Aboul-Enein, Hassan Y.: Instrumental Methods in Metal Ions Speciation: Chromatography, Capillary Electrophoresis and Electrochemistry. Taylor & Francis Ltd., New York (2006)CrossRefGoogle Scholar
  5. 5.
    Ali, Imran; Aboul-Enein, Hassan Y.; Gupta, Vinod K.; Chromatography, Nano; Electrophoresis, Capillary: Pharmaceutical and Environmental Analyses. Wiley, Hoboken (2009)Google Scholar
  6. 6.
    Basheer, Al Arsh: Chemical chiral pollution: impact on the society and science and need of the regulations in the 21st century. Chirality 30, 402–406 (2018)CrossRefGoogle Scholar
  7. 7.
    Gupta, V.K.; Ali, I.; Dekker, M.: Encyclopedia of Surface and Colloid Science, pp. 136–166. Marcel Dekker, New York (2002)Google Scholar
  8. 8.
    Baquero, F.; Martínez, J.-L.; Cantón, R.: Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotech. 19, 260–265 (2008)CrossRefGoogle Scholar
  9. 9.
    Liu, F.; Ying, G.-G.; Tao, R.; Zhao, J.-L.; Yang, J.-F.; Zhao, L.-F.: Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ. Pollut. 157, 1636–1642 (2009)CrossRefGoogle Scholar
  10. 10.
    Wei-ming, L.; Yan-yu, B.; Qi-xing, Z.: Degradation pathways and main degradation products of tetracycline antibiotics: research progress. Ying. Shengtai Xu. 23, 2300–2308 (2012)Google Scholar
  11. 11.
    Radjenović, J.; Petrović, M.; Ventura, F.; Barceló, D.: Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 42, 3601–3610 (2008)CrossRefGoogle Scholar
  12. 12.
    Ali, Imran; Gupta, V.K.: Advances in water treatment by adsorption technology. Nat. Protocol 1, 2661–2667 (2006)CrossRefGoogle Scholar
  13. 13.
    Ali, Imran; Hassan, Y.; Aboul-Enein, : Speciation of arsenic and chromium metal ions by reversed phase high performance liquid chromatography. Chemosphere 48, 275–278 (2002)CrossRefGoogle Scholar
  14. 14.
    Ali, Imran; Gupta, Vinod K.; Khan, Tabrez A.; Asim, Mohd: removal of arsenate from aqueous solution by electro-coagulation method using Al-Fe electrodes. Int. J. Electrochem. Sci. 7, 1898–1907 (2012)Google Scholar
  15. 15.
    Meher, Alok Kumar; Das, Sera; Rayalu, Sadhana; Bansival, Amit: Enhanced arsenic removal from drinking water by iron-enriched aluminosilicate adsorbent prepared from fly ash. Environ. Sci. Pollut. Res. 21, 3218–3229 (2014)CrossRefGoogle Scholar
  16. 16.
    Ali, Imran; Khan, Tabrez A.; Asim, Mohd: Removal of arsenate from groundwater by electrocoagulation method. Environ. Sci. Pollut. Res. 19, 1668–1676 (2012)CrossRefGoogle Scholar
  17. 17.
    Ali, Imran; AL-Othman, Zeid A.; Alwarthan, Abdulrahman: Molecular uptake of congo red dye from water on iron composite nano particles. J. Mol. Liq. 224, 171–176 (2016)CrossRefGoogle Scholar
  18. 18.
    Ali, Imran; AL-Othman, Zeid A.; Sanagi, Mohd Marsin: Green synthesis of iron nano-impregnated adsorbent for fast removal of fluoride from water. J. Mol. Liq. 211, 457–465 (2015)CrossRefGoogle Scholar
  19. 19.
    Alharbi, Omar M.L.; Basheer, Al Arsh; Khattab, Rafat A.; Ali, Imran: Health and environmental effects of persistent organic pollutants. J. Mol. Liq. 263, 442–453 (2018)CrossRefGoogle Scholar
  20. 20.
    Ali, Imran; Alharbi, Omar M.L.; Alothman, Zeid A.; Badjah, Ahmad Yacine; Basheer, Al Arsh: Artificial neural network modelling of amido black dye sorption on iron composite nano material: kinetics and thermodynamics studies. J. Mol. Liq. 250, 1–8 (2018)CrossRefGoogle Scholar
  21. 21.
    Burakova, Elena A.; Dyachkova, Tatyana P.; Rukhov, Artem V.; Tugolukov, Evgeny N.; Galunin, Evgeny V.; Tkachev, Alexey G.; ArshBasheer, Al; Ali, Imran: Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation. J. Mol. Liq. 253, 340–346 (2018)CrossRefGoogle Scholar
  22. 22.
    Deblonde, T.; Cossu-Leguille, C.; Hartemann, P.: Emerging pollutants in wastewater: a review of the literature. Int. J. Hyg. Environ. Health 214, 442–448 (2011)CrossRefGoogle Scholar
  23. 23.
    Heberer, T.: Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol. Lett. 131, 5–17 (2002)CrossRefGoogle Scholar
  24. 24.
    Kümmerer, K.: Antibiotics in the aquatic environment—a review—Part I. Chemosphere 75, 417–434 (2009)CrossRefGoogle Scholar
  25. 25.
    Ali, Imran: New generation adsorbents for water treatment. Chem. Revs. (ACS) 112, 5073–5091 (2012)CrossRefGoogle Scholar
  26. 26.
    Ali, Imran; khan, Tabrez A.; Asim, Mohd: Removal of arsenic from water by electrocoagulation and electrodialysis techniques. Sepn. Purfn. Rev. 40, 25–42 (2011)CrossRefGoogle Scholar
  27. 27.
    Ali, Imran; Althman, zeid A.; Alwarthan, Abdulrahman: Supra molecular mechanism of the removal of 17-\(\beta \)-estradiol endocrine disturbing pollutant from water on functionalized iron nano particles. J. Mol. Liq. 441, 123–129 (2017)CrossRefGoogle Scholar
  28. 28.
    Ali, Imran; Althman, zeid A.; Alwarthan, Abdulrahman: Uptake of propranolol on ionic liquid iron nanocomposite adsorbent: Kinetic, thermodynamics and mechanism of adsorption. J. Mol. Liq. 236, 205–213 (2017)CrossRefGoogle Scholar
  29. 29.
    Ali, Imran; Althman, zeid A.; Alwarthan, Abdulrahman: Molecular uptake of congo red dye from water on iron composite nano particles. J. Mol. Liq. 224, 171–176 (2016)CrossRefGoogle Scholar
  30. 30.
    Dehghani, Mohammad Hadi; Sanaei, Daryoush; Ali, Imran; Bhatnagar, Amit: Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: kinetic modeling and isotherm studies. J. Mol. Liq. 215, 671–679 (2016)CrossRefGoogle Scholar
  31. 31.
    Ali, Imran; Kumar, Chakresh: Advances in arsenic speciation techniques. Int. J. Environ. Anal. Chem. 84, 947–964 (2004)CrossRefGoogle Scholar
  32. 32.
    Fayaz, Mufida; Bhat, Musadiq H.; Kumar, Amit; Jain, Ashok K.: Comparative studies on different solvents used for the extraction of phytochemicals from the plant parts of Arnebia benthamii. (Wall Ex. G. Don) Johnston. J. Chem. Pharm. Res. 3, 220–224 (2017)Google Scholar
  33. 33.
    Ali, Imran; Althman, zeid A.; Alwarthan, Abdulrahman: Sorption, kinetics and thermodynamics studies of atrazine herbicide removal from water using iron nano-composite material. Int. J. Environ. Sci. Toxicol. 13, 733–742 (2016)CrossRefGoogle Scholar
  34. 34.
    Ali, Imran; Althman, Zeid A.; Alwarthan, Abdulrahman: Removal of secbumeton herbicide from water on composite nanoadsorbent. Desal. Water Treat. 57, 10409–10421 (2016)CrossRefGoogle Scholar
  35. 35.
    Ali, Imran; Althman, zeid A.; Alharbi, Omar M.L.: Uptake of pantoprazole drug residue from water using novel synthesized composite iron nano adsorbent. J. Mol. Liq. 218, 465–472 (2016)CrossRefGoogle Scholar
  36. 36.
    Ali, Imran; Althman, zeid A.; Alwarthan, Abdulrahman: Green synthesis of functionalized iron nano particles and molecular liquid phase adsorption of ametryn from water. J. Mol. Liq. 221, 1168–1174 (2016)CrossRefGoogle Scholar
  37. 37.
    Ali, Imran; Althman, zeid A.; Alwarthan, Abdulrahman: Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water. J. Mol. Liq. 219, 858–864 (2016)CrossRefGoogle Scholar
  38. 38.
    Ali, Imran; Asim, Mohd; Khan, T.A.: Arsenite removal from water by electro-coagulation on zinc-zinc and copper–copper electrodes. Int. J. Environ. Sci. Technol. 10, 377–384 (2013)CrossRefGoogle Scholar
  39. 39.
    Lv, J.-M.; Ma, Y.-L.; Chang, X.; Fan, S.-B.: Removal and removing mechanism of tetracycline residue from aqueous solution by using Cu-13X. Chem. Eng. J. 273, 247–253 (2015)CrossRefGoogle Scholar
  40. 40.
    Ma, Y.; Yan, C.; Alshameri, A.; Qiu, X.; Zhou, C.; li, D.: Synthesis and characterization of 13X zeolite from low-grade natural kaolin. Adv. Powder Technol. 25, 495–499 (2014)CrossRefGoogle Scholar
  41. 41.
    Scherzer, J.: Octane-enhancing, zeolitic FCC catalysts: scientific and technical aspects. Catal. Rev. 31, 215–354 (1989)CrossRefGoogle Scholar
  42. 42.
    Zhang, Z.Y.; Shi, T.B.; Jia, C.Z.; Ji, W.J.; Chen, Y.; He, M.Y.: Adsorptive removal of aromatic organosulfur compounds over the modified Na–Y zeolites. Appl. Catal. B: Environ. 82, 1–10 (2008)CrossRefGoogle Scholar
  43. 43.
    Fakhri, A.; Adami, S.: Adsorption and thermodynamic study of Cephalosporins antibiotics from aqueous solution onto MgO nanoparticles. J. Taiwan Inst. Chem. Eng. 45, 1001–1006 (2014)CrossRefGoogle Scholar
  44. 44.
    Chaouati, N.; Soualah, A.; Chater, M.: Adsorption of phenol from aqueous solution onto zeolites Y modified by silylation. Comp. Ren. Chim. 16, 222–228 (2013)CrossRefGoogle Scholar
  45. 45.
    Liang, Z.; Zhaob, Z.; Sun, T.; Shi, W.; Cui, F.: Adsorption of quinolone antibiotics in spherical mesoporous silica: effects of the retained template and its alkyl chain length. J. Hazard. Mater. 305, 8–14 (2016)CrossRefGoogle Scholar
  46. 46.
    Barzamini, R.; Falamaki, C.; Mahmoudi, R.: Adsorption of ethyl, iso-propyl, n-butyl and iso-butyl mercaptans on AgX zeolite: equilibrium and kinetic study. Fuel 130, 46–53 (2014)CrossRefGoogle Scholar
  47. 47.
    Fukahori, S.; Fujiwara, T.; Ito, R.; Funamizu, N.: pH-dependent adsorption of sulfa drugs on high silica zeolite: modeling and kinetic study. Desalin 275, 237–242 (2011)CrossRefGoogle Scholar
  48. 48.
    Ötker, H.M.; Akmehmet-Balcıoğlu, I.: Adsorption and degradation of enrofloxacin, a veterinary antibiotic on natural zeolite. J. Hazard. Mater. 122, 251–258 (2005)CrossRefGoogle Scholar
  49. 49.
    Braschi, I.; Blasioli, S.; Gigli, L.; Gessa, C.E.; Alberto, A.; Martucci, A.: Removal of sulfonamide antibiotics from water: evidence of adsorption into an organophilic zeolite Y by its structural modifications. J. Hazard Mater. 178(1–3), 218–225 (2010)CrossRefGoogle Scholar
  50. 50.
    Wang, Y.-J.; Jia, D.-A.; Sun, R.-J.; Zhu, H.-W.; Zhou, D.-M.: Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH. Environ. Sci. Technol. 42, 3254–3259 (2008)CrossRefGoogle Scholar
  51. 51.
    Samarghandi, M.R.; Al-Musawi, T.J.; Mohseni-Bandpi, A.; Zarrabi, M.: Adsorption of cephalexin from aqueous solution using natural zeolite and zeolite coated with manganese oxide nanoparticles. J. Mol. Liq. 211, 431–441 (2015)CrossRefGoogle Scholar
  52. 52.
    Zhou, Y.; Yang, Q.; Zhang, D.; Gan, N.; Li, Q.; Cuan, J.: Detection and removal of antibiotic tetracycline in water with a highly stable luminescent MOF. Sens. Actu. B: Chem. 262, 137–143 (2018)CrossRefGoogle Scholar
  53. 53.
    Alidadi, H.; Dolatabadi, M.; Davoudi, M.; Barjasteh-Askari, F.; Jamali-Behnam, F.; Hosseinzadeh, A.: Enhanced removal of tetracycline using modified sawdust: optimization, isotherm, kinetics, and regeneration studies. Proc. Saf. Environ. Prot. 117, 51–60 (2018)CrossRefGoogle Scholar
  54. 54.
    Treacy, M.M.J.; Higgins, J.B.; Commission, I.Z.A.S.: Collection of Simulated XRD Powder Patterns for Zeolites. Elsevier, Amsterdam (2007)Google Scholar
  55. 55.
    Kwak, J.-S.: Application of Taguchi and response surface methodologies for geometric error in surface grinding process. Int. J. Mach. Tool Manuf. 45, 327–334 (2005)CrossRefGoogle Scholar
  56. 56.
    Bradley, N.: The response surface methodology. Indiana University South Bend 71, 4–68 (2007)Google Scholar
  57. 57.
    Montgomery, D.C.: Design and Analysis of Experiments. Wiley, New York (2008)Google Scholar
  58. 58.
    Schmidt, S.R.; Launsby, R.G.: Understanding Industrial Designed Experiments. Air Academy Press, Colorado Springs (1989)Google Scholar
  59. 59.
    Gorji, S.; Bahram, M.: Experimental design for the study and optimization of the effect of different surfactants on the spectrophotometric determination of sulfide based on phenothiazine dye production. Anal. Methods 2, 948–953 (2010)CrossRefGoogle Scholar
  60. 60.
    Po-Hsiang, C.; Li, Z.; Jiang, W.-T.; Jean, J.-S.: Adsorption and intercalation of tetracycline by swelling clay minerals Appl. Clay Sci. 46, 27–36 (2009)Google Scholar
  61. 61.
    Huang, H.; Zou, Y.L.; Li, Y.N.: Experimental and modeling studies of sorption of tetracycline onto zeolite in the presence of copper(II). Adv. Mater. Res. 512–515, 2355–2360 (2012)CrossRefGoogle Scholar
  62. 62.
    Wang, Y.-J.; Jia, D.-A.; Sun, R.-J.; Zhu, H.-W.; Zhou, D.-M.: Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH Environ. Sci. Technol. 42(9), 3254–3259 (2008)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Asma Rahimi
    • 2
  • Behrouz Bayati
    • 1
  • Mehrdad Khamforoush
    • 2
  1. 1.Department of Chemical EngineeringIlam UniversityIlamIran
  2. 2.Department of Chemical Engineering, Faculty of EngineeringUniversity of KurdistanSanandajIran

Personalised recommendations