Arabian Journal for Science and Engineering

, Volume 44, Issue 4, pp 3745–3763 | Cite as

Detection and Defense Mechanisms on Duplicate Address Detection Process in IPv6 Link-Local Network: A Survey on Limitations and Requirements

  • Ahmed K. Al-Ani
  • Mohammed AnbarEmail author
  • Selvakumar Manickam
  • Chong Yung Wey
  • Yu-Beng Leau
  • Ayman Al-Ani
Research Article - Computer Engineering and Computer Science


The deployment of Internet Protocol Version 6 (IPv6) has progressed at a rapid pace. IPv6 has introduced new features and capabilities that is not available in IPv4. However, new security risks and challenges emerge with any new technology. Similarly, Duplicate Address Detection (DAD), part of Neighbor Discovery Protocol in IPv6 protocol, is subject to security threats such as denial-of-service attacks. This paper presents a comprehensive review on detection and defense mechanisms for DAD on fixed network. The strengths and weaknesses of each mechanism to Secure-DAD process are discussed from the perspective of implementation and processing time. Finally, challenges and future directions are presented along with feature requirements for the new security mechanism to secure DAD procedure in an IPv6 link-local network.


DoS attack Duplicate Address Detection IPv6 network Neighbor Discovery Protocol Network security 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buenaventura, F.J.; Gonzales, J.P.; Lu, M.E.; Ong, A.V.: IPv6 Stateless Address Autoconfiguration (SLAAC) Attacks and Detection (2015)Google Scholar
  2. 2.
    Number of Internet Users (2016)—Internet Live Stats. Accessed 13 Apr 2017
  3. 3.
    Deering, S.E.: Internet protocol, version 6 (IPv6) specification (1998)Google Scholar
  4. 4.
    IPv6—Google (2017). Accessed: 11 Oct 2017
  5. 5.
    Supriyanto; Hasbullah, I.H.; Murugesan, R.K.; Ramadass, S.: Survey of internet protocol version 6 link local communication security vulnerability and mitigation methods. IETE Tech. Rev. 30(1), 64–71 (2013)Google Scholar
  6. 6.
    Davies, J.: Introduction to IP version 6. Febr, Microsoft (2002)Google Scholar
  7. 7.
    Rajahalme, J.; Amante, S.; Jiang, S.; Carpenter, B.: IPv6 flow label specification (2011)Google Scholar
  8. 8.
    Najjar, F.; Kadhum, M.; El-Taj, H.: Neighbor discovery protocol anomaly detection using finite state machine and strict anomaly detection. In: Proceedings of the 4th International Conference on Internet Applications, Protocols and Services (NETAPPS2015), pp. 967–978 (2015)Google Scholar
  9. 9.
    Narten, T.; Simpson, W.A.; Nordmark, E.; Soliman, H.: Neighbor discovery for IP version 6 (IPv6) (2007)Google Scholar
  10. 10.
    Hogg, S.; Vyncke, E.: IPv6 Security. Pearson Education, London (2008)Google Scholar
  11. 11.
    Ard, J.B.: Internet Protocol Version Six (ipv6) at Uc Davis: Traffic Analysis with a Security Perspective. University of California, Davis (2012)Google Scholar
  12. 12.
    Handley, M.; Greenhalgh, A.: Steps towards a DoS-resistant internet architecture. In: Proceedings of the ACM SIGCOMM workshop on Future Directions in Network Architecture, pp. 49–56 (2004)Google Scholar
  13. 13.
    Durdaği, E.; Buldu, A.: IPV4/IPV6 security and threat comparisons. Procedia Soc. Behav. Sci. 2(2), 5285–5291 (2010)Google Scholar
  14. 14.
    Guangjia, S.; Zhenzhou, J.: Research on equivalence between address resolution and duplicate address detection. In: Proceedings of the 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), pp. 687–691Google Scholar
  15. 15.
    Elejla, O.E.; Anbar, M.; Belaton, B.: ICMPv6-based DoS and DDoS attacks and defense mechanisms: review. IETE Tech. Rev. 4602, 1–18 (2016)Google Scholar
  16. 16.
    Narten, T.; Draves, R.; Krishnan, S.: Privacy extensions for stateless address autoconfiguration in IPv6 (2007)Google Scholar
  17. 17.
    Hankins, D.W.; Mrugalski, T.: Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Options. For Dual-Stack Lite (2011)Google Scholar
  18. 18.
    Gont, F.: A Method for Generating Semantically Opaque Interface Identifiers with IPv6 Stateless Address Autoconfiguration (SLAAC) (2014)Google Scholar
  19. 19.
    Singh, H.: Performance analysis of unsupervised machine learning techniques for network traffic classification. In: Proceedings of the 2015 Fifth International Conference on Advanced Computing Communication Technologies, pp. 401–404 (2015)Google Scholar
  20. 20.
    Ullrich, J.; Krombholz, K.; Hobel, H.; Dabrowski, A.; Weippl, E.: IPv6 security: attacks and countermeasures in a nutshell. Usenix 4, 514–529 (2014)Google Scholar
  21. 21.
    Rehman, S.U.; Manickam, S.: Rule-based mechanism to detect denial of service (DoS) attacks on duplicate address detection process in IPv6 link local communication. In: Proceedings of the 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), pp. 1–6 (2015)Google Scholar
  22. 22.
    Saruhan, I.H.: Detecting and Preventing Rogue Devices on the Network. SANS Inst. InfoSec Read. Room, sans. org (2007)Google Scholar
  23. 23.
    Ahmed, A.S.; Hassan, R.; Othman, N.E.: Improving security for IPv6 neighbor discovery. In: Proceedings of the 5th International Conference on Electrical Engineering Informatics Bridg. Knowl. between Acad. Ind. Community, ICEEI 2015, pp. 271–274 (2015)Google Scholar
  24. 24.
    Liu, H.C.; Dai, Q.G.: Design of security neighbor discovery protocol. In: Proceedings of the 2013 International Conference on Communication Systems and Network Technologies (CSNT), pp. 538–541 (2013)Google Scholar
  25. 25.
    Zhu, M.; Martíinez, S.: On the performance analysis of resilient networked control systems under replay attacks. IEEE Trans. Automat. Contr. 59(3), 804–808 (2014)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Satrya, G.B.; Chandra, R.L.; Yulianto, F.A.: The detection of DDOS flooding attack using hybrid analysis in IPV6 networks. In: Proceedings of the 2015 3rd International Conference on Information and Communication Technology (ICoICT), pp. 240–244 (2015)Google Scholar
  27. 27.
    Hinden, R.M.; Deering, S.E.: IP version 6 addressing architecture (2006)Google Scholar
  28. 28.
    Arkko, J.; Kempf, J.; Zill, B.; Nikander, P.: Secure neighbor discovery (SEND) (2005)Google Scholar
  29. 29.
    Nordmark, E.; Bagnulo, M.; Levy-Abegnoli, E.: FCFS SAVI: first-come, first-served source address validation improvement for locally assigned IPv6 addresses (2012)Google Scholar
  30. 30.
    Oliveira, L.M.L.; Rodrigues, J.J.P.C.; Sousa, A.F.; Lloret, J.: Denial of service mitigation approach for IPv6-enabled smart object networks. Concurr. Comput. Pract. Exp. 25(1), 129–142 (2013)Google Scholar
  31. 31.
    Yao, G.; Bi, J.; Wang, S.; Zhang, Y.; Li, Y.: A pull model IPv6 duplicate address detection. In: Proceedings of the 2010 IEEE 35th Conference on Local Computer Networks (LCN), pp. 372–375 (2010)Google Scholar
  32. 32.
    Al-Ani, A.K.; Anbar, M.; Manickam, S.; Al-Ani, A.; Leau, Y.-B.: Proposed DAD-match security technique based on hash function to secure duplicate address detection in IPv6 Link-local Network (2017). Accessed 8 May 2018
  33. 33.
    Praptodiyono, S.; Hasbullah, I.H.; Kadhum, M.M.; Wey, C.Y.; Murugesan, R.K.; Osman, A.: Securing duplicate address detection on IPv6 using distributed trust mechanism. Int. J. Simul. Syst. Sci. Technol. 17(26), 322 (2016)Google Scholar
  34. 34.
    AlSa’deh, A.; Meinel, C.: Secure neighbor discovery: review, challenges, perspectives, and recommendations. IEEE Secur. Priv. 10(4), 26–34 (2012)Google Scholar
  35. 35.
    Rehman, S.U.; Manickam, S.: Denial of service attack in IPv6 duplicate address detection process. Int. J. Adv. Comput. Sci. Appl. 1(7), 232–238 (2016)Google Scholar
  36. 36.
    Al-Ani, A.K.; Anbar, M.; Manickam, S.; Al-Ani, A.; Leau, Y.-B.: Proposed DAD-match mechanism for securing duplicate address detection process in IPv6 link-local network based on symmetric-key algorithm. In: International Conference on Computational Science and Technology, pp. 108–118 (2017)Google Scholar
  37. 37.
    Al-Ani, A.K.; Anbar, M.; Manickam, S.; Al-Ani, A.: DAD-match: technique to prevent DoS attack on duplicate address detection process in IPv6 link-local network. J. Commun. 13(6), 317–324 (2018)Google Scholar
  38. 38.
    Rehman, S.U.; Manickam, S.: Significance of duplicate address detection mechanism in IPV6 and its security issues: a survey. Indian J. Sci. Technol. 8(30), 1–8 (2015)Google Scholar
  39. 39.
    Beck, F.; Cholez, T.; Festor, O.; Chrisment, I.: Monitoring the neighbor discovery protocol. In: International Multi-Conference on Computing in the Global Information Technology, 2007. ICCGI 2007, p. 57 (2007)Google Scholar
  40. 40.
    Mohacsi, J.; Popoviciu, C.; Van de Velde, G.: IPv6 Router Advertisement Guard (2011)Google Scholar
  41. 41.
    Gont, F.: Security Implications of IPv6 Fragmentation with IPv6 Neighbor Discovery (2013)Google Scholar
  42. 42.
    Levy-Abegnoli, E.; de Velde, G.; Popoviciu, C.; Mohacsi, J.: IPv6 router advertisement guard (2011)Google Scholar
  43. 43.
    Barbhuiya, F.A.; Bansal, G.; Kumar, N.; Biswas, S.; Nandi, S.: Detection of neighbor discovery protocol based attacks in IPv6 network. Netw. Sci. 2(3–4), 91–113 (2013)Google Scholar
  44. 44.
    Chiu, S.; Gamess, E.: Easy-send: a didactic implementation of the secure neighbor discovery protocol for IPV6. In: Proceedings of the World Congress on Engineering and Computer Science, vol. 1 (2009)Google Scholar
  45. 45.
    Kumar, N.; Bansal, G.; Biswas, S.; Nandi, S.: Host based IDS for NDP related attacks: NS and NA Spoofing. In: India Conference (INDICON). Annual IEEE, pp. 1–6 (2013)Google Scholar
  46. 46.
    Herrera, A.: How Secure is the Next-Generation Internet? An Examination of IPv6 (2013)Google Scholar
  47. 47.
    Song, G.; Ji, Z.: Novel duplicate address detection with hash function. PLoS One 11(3), e0151612 (2016)Google Scholar
  48. 48.
    Ahmed, A.S.; Hassan, R.; Othman, N.E.: IPv6 neighbor discovery protocol specifications, threats and countermeasures: a survey. IEEE Access 5, 18187–18210 (2017)Google Scholar
  49. 49.
    Wu, J.; Ren, G.; Li, X.: Source address validation: Architecture and protocol design. In: IEEE International Conference on Network Protocols: ICNP 2007, pp 276–283 (2007)Google Scholar
  50. 50.
    Hasbullah, I.; Murugesan, R.; Ramadass, S.: Survey of internet protocol version 6 link local communication security vulnerability and mitigation methods. IETE Tech. Rev. 30(1), 64 (2013)Google Scholar
  51. 51.
    Yan, Z.; Deng, G.; Wu, J.: SAVI-based IPv6 source address validation implementation of the access network. In: International Conference on Computer Science and Service System (CSSS), pp. 2530–2533 (2011)Google Scholar
  52. 52.
    McPherson, D.; Baker, F.; Halpern, J.: SAVI threat scope. draft-ietf-savi-threat-scope-05 (2011)Google Scholar
  53. 53.
    McPherson, D.; Joel, H.; Fred, B.: Source Address Validation Improvement (SAVI) Threat Scope, pp. 1–25 (2013)Google Scholar
  54. 54.
    Yao, G.; Bi, J.; Xiao, P.: Source address validation solution with OpenFlow/NOX architecture. In: 2011 19th IEEE International Conference on Network Protocols (ICNP), pp. 7–12 (2011)Google Scholar
  55. 55.
    Rowland, C.H.: Intrusion detection system. Google Patents (2002)Google Scholar
  56. 56.
    Perumal, K.; Priya, M.M.J.P.J.: Trust based security enhancement mechanism for neighbor discovery protocol in IPV6. Int. J. Appl. Eng. Res. 11(7), 4787–4796 (2016)Google Scholar
  57. 57.
    Jammal, M.; Singh, T.; Shami, A.; Asal, R.; Li, Y.: Software defined networking: state of the art and research challenges. Comput. Netw. 72, 74–98 (2014)Google Scholar
  58. 58.
    Bansal, G.; Kumar, N.; Nandi, S.; Biswas, S.: Detection of NDP based attacks using MLD. In: Proceedings of the Fifth International Conference on Security of Information and Networks, pp. 163–167 (2012)Google Scholar
  59. 59.
    Barbhuiya, F.A.; Biswas, S.; Nandi, S.: Detection of neighbor solicitation and advertisement spoofing in IPv6 neighbor discovery protocol. In: Proceedings of the 4th International Conference on Security Information Networks—SIN ’11, p. 111 (2011)Google Scholar
  60. 60.
    Najjar, F.; Kadhum, M.M.; El-Taj, H.: Detecting neighbor discovery protocol-based flooding attack using machine learning techniques. In: Advances in Machine Learning and Signal Processing, pp. 129–139. Springer, Berlin (2016)Google Scholar
  61. 61.
    Kim, H.; Feamster, N.: Improving network management with software defined networking. IEEE Commun. Mag. 51(2), 114–119 (2013)Google Scholar
  62. 62.
    Ali, S.T.; Sivaraman, V.; Radford, A.; Jha, S.: A survey of securing networks using software defined networking. IEEE Trans. Reliab. 64(3), 1086–1097 (2015)Google Scholar
  63. 63.
    Lu, Y.; Wang, M.; Huang, P.: An SDN-based authentication mechanism for securing neighbor discovery protocol in IPv6. Secur. Commun. Netw. 2017, 5838657 (2017).
  64. 64.
    Aura, T.: Cryptographically generated addresses (CGA) (2005)Google Scholar
  65. 65.
    Kukec, A.; Bagnulo, M.; Mikuc, M.: SEND-based source address validation for IPv6. In: Proceedings of the 10th International Conference on Telecommunications, 2009. ConTEL 2009, pp. 199–204 (2009)Google Scholar
  66. 66.
    Smart, N.P. (ed.): Public Key Encryption and Signature Algorithms. In: Cryptography Made Simple, pp. 313–347. Springer, Berlin (2016)Google Scholar
  67. 67.
    Caicedo, C.E.; Joshi, J.B.D.; Tuladhar, S.R.: IPv6 security challenges. Comput. Long Beach Calif. 42(2), 36–42 (2009)Google Scholar
  68. 68.
    Kukec, A.; Krishnan, S.; Jiang, S.: The secure neighbor discovery (SEND) hash threat analysis (2011)Google Scholar
  69. 69.
    Praptodiyono, S.; Murugesan, R.K.; Hasbullah, I.H.; Wey, C.Y.; Kadhum, M.M.; Osman, A.: Security mechanism for IPv6 stateless address autoconfiguration. In: International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT), pp. 31–36 (2015)Google Scholar
  70. 70.
    Gagneja, K.; Singh, J.: Survey and analysis of security issues on RSA algorithm for digital video data. J. Discrete Math. Sci. Cryptogr. 19(1), 39–55 (2016)MathSciNetGoogle Scholar
  71. 71.
    AlSa’deh, A.; Rafiee, H.; Meinel, C. (eds.): SEcure neighbor discovery: a cryptographic solution for securing IPv6 local link operations. In: Theory and Practice of Cryptography Solutions for Secure Information Systems, pp. 178–198. IGI Global, Hershey (2013)Google Scholar
  72. 72.
    Stockebrand, B.: IP Security (IPSEC). IPv6 Practice A Unixer’s Guide to Next Generation Internet, pp. 311–317. Springer, Berlin (2007)Google Scholar
  73. 73.
    Seo, K.; Kent, S.: Security architecture for the internet protocol (2005)Google Scholar
  74. 74.
    Kaufman, C.; Hoffman, P.; Nir, Y.; Eronen, P.; Kivinen, T.: Internet key exchange protocol version 2 (IKEv2) (2014)Google Scholar
  75. 75.
    Weis, B.; Gross, G.; Ignjatic, D.: Multicast extensions to the security architecture for the internet protocol (2008)Google Scholar
  76. 76.
    Frankel, S.; Graveman, R.; Pearce, J.; Rooks, M.: Guidelines for the secure deployment of IPv6. NIST Spec. Publ. 800, 119 (2010)Google Scholar
  77. 77.
    Jara, A.J.; Fernandez, D.; Lopez, P.; Zamora, M.A.; Skarmeta, A.F.: Lightweight MIPV6 with IPSEC support. Mob. Inf. Syst. 10(1), 37–77 (2014)Google Scholar
  78. 78.
    Rantos, K.; Papanikolaou, A.; Manifavas, C.: IPSEC over IEEE 802.15. 4 for low power and lossy networks. In: Proceedings of the 11th ACM International Symposium on Mobility Management and Wireless Access, pp. 59–64 (2013)Google Scholar
  79. 79.
    Ferguson, N.; Schneier, B.: A Cryptographic Evaluation of IPsec, vol. 3031, p. 14. Counterpane Internet Security Inc., San Jose (2000)Google Scholar
  80. 80.
    Duan, Z.; Gopalan, K.; Dong, Y.: Push vs. pull: implications of protocol design on controlling unwanted traffic. SRUTI 5, 25–30 (2005)Google Scholar
  81. 81.
    Apostol, K.: Brute-force attack (2012)Google Scholar
  82. 82.
    Knudsen, L.R.; Robshaw, M.J.B.: Brute force attacks. The block cipher companion, pp. 95–108. Springer, Berlin (2011)Google Scholar
  83. 83.
    Rafiee, H.; Meinel, C.: SSAS: a simple secure addressing scheme for IPv6 autoconfiguration. In: Proceedings of the Eleventh Annual International Conference on Privacy, Security and Trust (PST). vol. 2013, pp. 275–282 (2013)Google Scholar
  84. 84.
    Barrera, D.; Wurster, G.; Van Oorschot, P.C.: Back to the future: revisiting IPv6 privacy extensions. Login Usenix Mag. 36(1), 16–26 (2011)Google Scholar
  85. 85.
    Groat, S.; Dunlop, M.; Marchany, R.; Tront, J.: The privacy implications of stateless IPv6 addressing. In: Proceedings of the Sixth Annual Workshop on Cyber Security and Information Intelligence Research, p. 52 (2010)Google Scholar
  86. 86.
    Khalique, A.; Singh, K.; Sood, S.: Implementation of elliptic curve digital signature algorithm. Int. J. Comput. Appl. 2(2), 21–27 (2010)Google Scholar
  87. 87.
    Aranha, D.F.; Dahab, R.; López, J.; Oliveira, L.B.: Efficient implementation of elliptic curve cryptography in wireless sensors. Adv. Math. Commun. 4(2), 169–187 (2010)MathSciNetzbMATHGoogle Scholar
  88. 88.
    Igoe, K.; McGrew, D.; Salter, M.: Fundamental elliptic curve cryptography algorithms (2011)Google Scholar
  89. 89.
    Rehman, S.U.; Manickam, S.: Improved mechanism to prevent denial of service attack in IPv6 duplicate address detection process. Int. J. Adv. Comput. Sci. Appl. 8(2), 63–70 (2017)Google Scholar
  90. 90.
    Rivest, R.: The MD5 message-digest algorithm (1992)Google Scholar
  91. 91.
    Barchett, L.D.; Banerji, A.; Tracey, J.M.; Cohn, D.L.: Problems using MD5 with IPv6. Perform. Eval. 27, 507–518 (1996)zbMATHGoogle Scholar
  92. 92.
    Xie, T.; Liu, F.; Feng, D.: Fast collision attack on MD5. IACR Cryptol. ePrint Arch. 2013, 170 (2013)Google Scholar
  93. 93.
    Bhargavan, K.; Brzuska, C.; Fournet, C.; Green, M.; Kohlweiss, M.; Zanella-Béguelin, S.: Downgrade resilience in key-exchange protocols. In: Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), pp. 506–525 (2016)Google Scholar
  94. 94.
    Andreeva, E.; Mennink, B.; Preneel, B.: Open problems in hash function security. Des. Codes Cryptogr. 77(2–3), 611–631 (2015)MathSciNetzbMATHGoogle Scholar
  95. 95.
    Polk, T.; Chen, L.; Turner, S.; Hoffman, P.: Security considerations for the SHA-0 and SHA-1 message-digest algorithms (2011)Google Scholar
  96. 96.
    Butler, K.; Farley, T.R.; McDaniel, P.; Rexford, J.: A survey of BGP security issues and solutions. Proc. IEEE 98(1), 100–122 (2010)Google Scholar
  97. 97.
    Guo, J.; Peyrin, T.; Poschmann, A.: The Photon family of lightweight hash functions. In: Annual Cryptology Conference, pp. 222–239 (2011)Google Scholar
  98. 98.
    Bogdanov, A.; Knežević, M.; Leander, G.; Toz, D.; Varici, K.; Verbauwhede, I.: SPONGENT: a lightweight hash function. In: International Workshop on Cryptographic Hardware and Embedded Systems, pp. 312–325 (2011)Google Scholar
  99. 99.
    Aumasson, J.-P.; Henzen, L.; Meier, W.; Naya-Plasencia, M.: Quark: a lightweight hash. In: International Workshop on Cryptographic Hardware and Embedded Systems, pp. 1–15 (2010)Google Scholar
  100. 100.
    Turner, S.; Chen, L.: Updated security considerations for the MD5 message-digest and the HMAC-MD5 algorithms (2011)Google Scholar
  101. 101.
    El Ksimi, A.; Leghris, C.: Towards a new algorithm to optimize IPv6 neighbor discovery security for small objects networks. Secur. Commun. Netw. 2018, 1816462 (2018). Google Scholar
  102. 102.
    Goswami, S.; Laha, S.; Chakraborty, S.; Dhar, A.: Enhancement of GSM Security using elliptic curve cryptography algorithm (2012). Accessed 24 June 2018
  103. 103.
    Mustafi, K.; Sheikh, N.; Hazra, T.K.; Mazumder, M.; Bhattacharya, I.; Chakraborty, A.K.: A novel approach to enhance the security dimension of RSA algorithm using bijective function (2016). Accessed 24 June 2018
  104. 104.
    Flood, R.L.; Carson, E.: Dealing with Complexity: An Introduction to the Theory and Application of Systems Science. Springer, Berlin (2013)zbMATHGoogle Scholar
  105. 105.
    Kreinovich, V.; Lakeyev, A.V.; Rohn, J.; Kahl, P.T.: Computational, Complexity and Feasibility of Data Processing and Interval Computations, vol. 10. Springer, Berlin (2013)zbMATHGoogle Scholar
  106. 106.
    Penetration Testing Training with Kali Linux \({\vert }\) Kali Linux. Accessed: 10 Jun 2018
  107. 107.
    Dawood, H.: IPv6 security vulnerabilities. Int. J. Inf. Secur. Sci. 1(4), 100–105 (2012)Google Scholar
  108. 108.
    Wu, J.; Bi, J.; Bagnulo, M.; Baker, F.; Vogt, C.: Source address validation improvement (SAVI) framework (No. RFC 7039) (2013)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Ahmed K. Al-Ani
    • 1
  • Mohammed Anbar
    • 1
    Email author
  • Selvakumar Manickam
    • 1
  • Chong Yung Wey
    • 1
  • Yu-Beng Leau
    • 2
  • Ayman Al-Ani
    • 1
  1. 1.National Advanced IPv6 Center (NAv6)Universiti Sains Malaysia (USM)GelugorMalaysia
  2. 2.Faculty of Computing and InformaticsUniversiti Malaysia Sabah (UMS)Kota KinabaluMalaysia

Personalised recommendations