Advertisement

Enhancement of Mechanical Properties of Cork Through Thermal High-Temperature Treatment (THT) and Boiling

  • T. Kermezli
  • M. Douani
  • M. Announ
Research Article - Mechanical Engineering
  • 13 Downloads

Abstract

The ecological treatment of cork, at high temperature brings about some changes in its mechanical and chemical properties, which make cork a new material with different types of performance (thermal, mass, acoustic and vibratory). For this purpose, our study focuses on determining the optimal thermal cycle by using TGA and IR analyses. In terms of mass insulation, the calculation of the diffusion coefficient, which is a potential indicator of cork improvement, is carried out using new experimental protocols that consist of high-temperature treatment (THT) in addition to boiling. The obtained results show that the lowest value of the apparent diffusion coefficient of cork (Dapp) is reached when the thermal high-temperature treatment (THT) is preceded by boiling and when the heat rate is \(0.5\,{^{\circ }}\hbox {C/mn}\). The average value of Dapp is determined through the calibration of theoretical model with the experimental data collected by utilising conductimetric measures. Using the Bat-Algorithm, the Dapp is determined accurately with a relative error of \(10^{-7}\). Furthermore, the Dapp value is affected by the heat rate during the treatment cycle.

Keywords

Cork Heat rate of THT cycle Boiling Diffusion model Optimization TGA IR 

List of symbols

\(C_{\mathrm{KCl}}\)

KCl mass concentration (g/l)

\((c_{t})_{\mathrm{exp} }\)

Instantaneous concentration of KCl measured by the meter (mM)

\(C_{\infty }\)

Concentration of KCl in the solution after an infinite time (mM)

\(D_{\mathrm{A} }\)

Effective diffusivity of KCl (\(\hbox {m}^{2}/\hbox {s})\)

\((D_{\mathrm{app}})_{\mathrm{A} }\)

Apparent diffusion coefficient of cork sample A

\(D_{\mathrm{A}_{0.5^{\circ }\mathrm{C}} } \)

Apparent diffusion coefficient of cork samples A with \(0.5\,{^{\circ }}\hbox {C/min}\) of rate heat \((\hbox {m}^{2}/\hbox {s})\)

\(D_j^0 \)

Self-diffusion coefficient of ion j

F

Faraday constant (C)

l

Half thickness of sample (m)

\(M_{\mathrm{KCl}}\)

Molar mass of solute (g/mol)

\(m_{\mathrm{KCl} }\)

Mass of KCl (g)

\((m_{t})_{\mathrm{exp} }\)

Mass of the substance released experimentally at time t (g)

\(m_{\infty }\)

Mass transferred after total desorption after an infinite time (g)

R

Ideal gas constant (J/mol K)

\(v_{\mathrm{sol} }\)

Volume of the liquid solution immersing the object

\(V_{\mathrm{W} }\)

Volume of water (l)

\(\left| {Z_j } \right| \)

Absolute value of the charge of ion j

\(\sigma _{\mathrm{c}_t } \)

Instantaneous corrected conductivity (S/m)

\(\lambda _j^0 \)

Equivalent conductivity limits diffusion of ion j in water at \(25\,{^{\circ }}\hbox {C}\)

\(\varepsilon \)

Porosity

\(\tau \)

Tortuosity

Subscripts

IR

Infra-red

KCl

Potassium chloride

OH

Hydroxide

THT

High-temperature treatment

TGA

Thermogravimetry

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to express their sincere gratitude to the director of the Military Academy Polytechnic for giving us permission to conduct high-temperature treatment experiments in mechanical engineering laboratory.

References

  1. 1.
    Costa, A.; Barbosac, I.; Roussado, C.; Graça, J.; Spiecker, H.: Climate response of cork growth in the Mediterranean oak (Quercus suber L.) woodlands of southwestern Portugal. Dendrochronologia 38, 72–81 (2016).  https://doi.org/10.1016/j.dendro.2016.03.007 CrossRefGoogle Scholar
  2. 2.
    Martínez-Vilalta, J.; Lloret, F.; Breshears, D.: Stand- and tree-level determinants of the drought response of Scots pine radial growth. Oecologia 168(3), 877–888 (2012).  https://doi.org/10.1007/s00442-011-2132-8 CrossRefGoogle Scholar
  3. 3.
    Gil, L.: New cork-based materials and applications. Materials 8(2), 625–637 (2015).  https://doi.org/10.3390/ma8020625 CrossRefGoogle Scholar
  4. 4.
    Gibson, L.J.; Easterling, K.E.; Ash, M.F.: The structure and mechanics of cork. Proc. R. Soc. Lond. 377, 99–117 (1981).  https://doi.org/10.1098/rspa.1981.0117 CrossRefGoogle Scholar
  5. 5.
    Santos Silva, J.; Dias Rodrigues, J.; Moreira, R.A.S.: Application of cork compounds in sandwich structures for vibration damping. J. Sandw. Struct. Mater. 12, 495–515 (2010).  https://doi.org/10.1177/1099636209104538 CrossRefGoogle Scholar
  6. 6.
    Kermezli, T.; Announ, M.; Bensmaili, A.: The effect of the heat treatment level HT on the mechanical behavior of cork. Mechanika 21(1), 8–11 (2016).  https://doi.org/10.5755/j01.mech.22.1.12252 CrossRefGoogle Scholar
  7. 7.
    Sánchez-González, M.; García-Olmo, J.; Prades, C.: Correlation between porosity of cork planks before and after boiling using near infrared spectroscopy. Eur. J. Wood Wood Prod. 74(4), 509–517 (2016)CrossRefGoogle Scholar
  8. 8.
    Pereira, H.: Cork: Biology, Production and Uses. Elsevier, Amsterdam. The Netherlands (2007)Google Scholar
  9. 9.
    Costa, A.; Pereira, H.: Influence of cutting direction of cork planks on the quality and porosity characteristics of natural cork stoppers. For. Syst. 19(1), 51–60 (2010)Google Scholar
  10. 10.
    Costa, A.; Pereira, H.: Quality characterization of wine cork stoppers using computer vision. Int. Sci. Vigne Vin 39(4), 209–218 (2005).  https://doi.org/10.20870/oeno-one.2005.39.4.887 CrossRefGoogle Scholar
  11. 11.
    Costa, A.; Pereira, H.: Influence of vision systems black and white colored and visual digitalization in natural cork stopper quality estimation. J. Sci. Food Agric. 87, 2222–2228 (2007).  https://doi.org/10.1002/jsfa.2947 CrossRefGoogle Scholar
  12. 12.
    Oliveira, V.; Knapic, S.; Pereira, H.: Natural variability of surface porosity of wine cork stoppers of different commercial classes. J. Int. Sci. Vigne Vin 46(4), 331–340 (2012).  https://doi.org/10.20870/oeno-one.2012.46.4.1523 CrossRefGoogle Scholar
  13. 13.
    Costa, A.; Pereira, H.: Computer vision applied to cork stoppers inspection. In Cork oak woodlands and cork industry: present, past and future, pp. 394–405. Spain, Santiago Zapata, Barcelona (2009)Google Scholar
  14. 14.
    Anjos, O.; Pereira, H.; Rosa, M.E.: Effect of quality, porosity and density on the compression properties of cork. Holz als Roh- und Werkstoff 66, 295 (2008).  https://doi.org/10.1007/s00107-008-0248-2 CrossRefGoogle Scholar
  15. 15.
    Finnish Thermowood Association, ThermoWood handbook. Helsinki, Finland (2003). http://www.thermowood.fi/data.php/200312/795460200312311156_tw_handbook.pdf.
  16. 16.
    lit, Y.; Gregory, S.: Diffusion of ions in sea water and in deep-sea sediments. Acta 38, 703–71 (1974)Google Scholar
  17. 17.
    Dreo, J.; Petrowski, A.; Siarry, P.; Taillard, E.: Métaheuristiques pour l’optimisation difficile. Algorithmes. Eyrolles, 356 , 356 (2003). ISBN: 978-2-212-11368-6Google Scholar
  18. 18.
    Holland, J.H.: Adaptation in Natural and Artificial Systems (Bradford Books edition), 1st edn. MIT Press, Cambridge (1975)Google Scholar
  19. 19.
    Deb, K.: Optimization for Engineering Design: Algorithms and Examples. Prentice-Hall, New Delhi (1995)Google Scholar
  20. 20.
    Pelta, D.A.; Krasnogor, N.: Nature inspired cooperative strategies for optimization. Int. J. Intell. Syst. 24, 723–725 (2009).  https://doi.org/10.1002/int.20357 CrossRefGoogle Scholar
  21. 21.
    Yang, X.S.; Gandomi, A.H.: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 29(5), 464–483 (2012).  https://doi.org/10.1108/02644401211235834 CrossRefGoogle Scholar
  22. 22.
    Yang, X.S.: A new metaheuristic bat-inspired algorithm. Stud. Comput. Intell. 284, 65–74 (2010).  https://doi.org/10.1007/978-3-642-12538-6_6 CrossRefzbMATHGoogle Scholar
  23. 23.
    Alavi, A.H.; Gandomi, A.H.: A robust data mining approach for formulation of geotechnical engineering systems. Int. J. Comput. A Eng. Comp. 28(3), 242–274 (2011).  https://doi.org/10.1108/02644401111118132 CrossRefzbMATHGoogle Scholar
  24. 24.
    Pereira, H.: Chemical composition and variability of cork from Quercus suber L. Wood Sci. Technol. 22(3), 211–218 (1988).  https://doi.org/10.1007/BF0038601 CrossRefGoogle Scholar
  25. 25.
    Anthony, J.T.; Rodriguez, D.E.; Federici, J.F.; Brisson, C.: Non-destructive measurement of water diffusion in natural cork enclosures using terahertz spectroscopy and imaging. J. Infrared Millim. Terahertz Waves 32, 513–527 (2011).  https://doi.org/10.1007/s10762-011-9769-6 CrossRefGoogle Scholar
  26. 26.
    Karbowiak, T.; Mansfield, A.K.; Barrera-García, V.D.; Chassagne, D.: Sorption and diffusion properties of volatile phenols into cork. Food Chem. 122, 1089–109 (2010).  https://doi.org/10.1016/j.foodchem.2010.03.089 CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.LCVVE, Faculty of TechnologyUniversity Hassiba BenboualiChlefAlgeria
  2. 2.LME, Faculty of TechnologyUniversité Yahia Fares de MédéaMédéaAlgeria

Personalised recommendations