Arabian Journal for Science and Engineering

, Volume 44, Issue 8, pp 6805–6811 | Cite as

Design and Analysis of Non-spiral Planar Microcoil-Based Electromagnetic Microactuator

  • S. KrishnapriyaEmail author
  • Rama Komaragiri
  • K. J. Suja
Research Article - Electrical Engineering


Lab-on-chip devices essentially require micropumps and valves which incorporate a microactuating mechanism to control fluid flow. In this work, a non-spiral type planar microcoil is reported for implementing an electromagnetic microactuator. The effect of variation in coil geometries on the microactuator performance is analyzed for the first time. The microcoil fabricated and characterized in this work considerably reduces the number of lithography layers, thus improving the ease of fabrication while reducing the series coil resistance. The microcoil structures are further analyzed for the microactuator performance using finite element method, and the effect of coil geometries on the electromagnetic force generated by the actuator is studied. Microfabrication and electrical characterization results of the non-spiral planar microcoils show the influence of the same on the actuator performance. A tapered square microcoil geometry is proposed to improve the outputs from the actuator.


Lab-on chip Finite element method Microactuator Non-spiral planar microcoils Tapered square geometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Poliakine, J.; Copt, F.; Douglas, M.A.; Yoan, C.; Yves, P.: Modeling, design, and manufacturing of microfabricated coils with high inductance density. J. Microelectromech. Syst. 26(6), 1248–1258 (2017)CrossRefGoogle Scholar
  2. 2.
    Said, M.M.; Jumril, Y.; Roer, E.P.; Burhanuddin, Y.M.; Badariah, B.: PDMS based electromagnetic actuator membrane with embedded magnetic particles in polymer composite. Sens. Actuators A Phys. 245, 85–96 (2016)CrossRefGoogle Scholar
  3. 3.
    Amirouche, F.; Zhou, Y.; Johnson, T.: Current micropump technologies and their biomedical applications. Microsyst. Technol. 5, 647–666 (2009)CrossRefGoogle Scholar
  4. 4.
    Chandrasekhar, A.; Alluri, N.R.; Sudhakaran, M.S.P.; Mok, Y.S.; Kim, S.J.: A smart mobile pouch as a biomechanical energy harvester towards self-powered smart wireless power transfer applications. Nanoscale 9(28), 9818–9824 (2017)CrossRefGoogle Scholar
  5. 5.
    Amato, M.; Dalena, F.; Coviello, C.; De Vittorio, M.; Petroni, S.: Modeling, fabrication and characterization of micro-coils as magnetic inductors for wireless power transfer. Microelectron. Eng. 111, 143–148 (2013)CrossRefGoogle Scholar
  6. 6.
    Wu, W.P.; Lu, R.S.; Zhou, X.L.; Ni, Z.H.: The nuclear magnetic resonance probe based on a printed circuit board planar microcoil. In: IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), pp. 169–172 . IEEE (2013)Google Scholar
  7. 7.
    Eroglu, S.; Friedman, G.; Magin, R.L.: Estimate of losses and signal- to-noise ratio in planar inductive microcoil detectors used for NMR. IEEE Trans. Magn. 37(4), 2787–2789 (2001)CrossRefGoogle Scholar
  8. 8.
    Kohlmeier, T.; Seidemann, V.; Bttgenbach, S.; Gatzen, H.: An investigation on technologies to fabricate microcoils for miniaturized actuator systems. Microsyst. Technol. 10(3), 175–181 (2004)CrossRefGoogle Scholar
  9. 9.
    Krishnapriya, S.; Rama, S.K.; Suja, K.J.: Significance of Non-spiral Planar Microcoils Over Spiral Coils for Biomedical Applications, IEEE-ICEE. IIT Bombay, Mumbai (2016)Google Scholar
  10. 10.
    Krishnapriya, S.; Rama, S.K.; Suja, K.J.: Modeling and simulation of non-spiral coil for magnetic sensing applications. J. Mech. Sci. Technol. 31(11), 5415–5421 (2017)CrossRefGoogle Scholar
  11. 11.
    Pawinanto, R.E.; Jumril, Y.; Burhanuddin, M.; Azrul, H.: Design and fabrication of compact MEMS electromagnetic microactuator with planar micro-coil based on PCB. Telecommun. Comput. Electron. Control 3, 856–866 (2016)Google Scholar
  12. 12.
    Pawinanto, R.E., et al.: Finite element analysis on magnetic force generation of an electromagnetic micro-actuator for micropump. In: Micro and Nanoelectronics (RSM), IEEE Regional Symposium (2013)Google Scholar
  13. 13.
    Bttgenbach, S.: Electromagnetic micromotors—design, fabrication and applications. Micromachines 5(4), 929–942 (2014)CrossRefGoogle Scholar
  14. 14.
    Nisar, A.; Afzulpurkar, N.; Mahaisavariya, B.; Tuantranont, A.: MEMS based micropumps in drug delivery and bio-medical applications. Sens. Actuators B 130, 917–942 (2008)CrossRefGoogle Scholar
  15. 15.
    Al-Halhouli, A.T.; Kilani, M.I.; Bttgenbach, S.: Development of a novel electromagnetic pump for bio-medical applications. Sens. Actuator A Phys. 162(62), 172–176 (2010)CrossRefGoogle Scholar
  16. 16.
    Yin, H.-L.; Huang, Y.-C.; Fang, W.; Hsieh, J.: A novel electromagnetic elastomer membrane actuator with a semi-embedded coil. Sens. Actuator A Phys. 139(1–2), 194–202 (2007)CrossRefGoogle Scholar
  17. 17.
    De Bhails, D.; et al.: Modelling and analysis of a magnetic microactuator. Sens. Actuators A Phys. 81(1), 285–289 (2000)CrossRefGoogle Scholar
  18. 18.
    Krishnapriya, S.; Rama, S.K.; Suja, K.J.: Non-spiral Planar Microcoils for Biomedical Applications. IEEE-NEMS 2017, UCLA, CA, USA (2017)Google Scholar
  19. 19.
    Pan, T.; McDonald, S.J.; Kai, E.M.; Ziaie, B.: A magnetically driven PDMS micropump with ball check-valves. J. Micromech. Microeng. 15(5), 1021–1026 (2005)CrossRefGoogle Scholar
  20. 20.
    Pawinanto, P.R.; Yunas, J.; Majlis, B.; Bais, B.; Said, M.M.: Fabrication and testing of electromagnetic mems microactuator utilizing PCB based planar microcoil. ARPN J. Eng. Appl. Sci. 10(18), 8399–8403 (2015)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.National Institute of TechnologyCalicutIndia
  2. 2.Bennett UniversityNoidaIndia

Personalised recommendations