Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 8, pp 6795–6804 | Cite as

A Unified AC–MTDC Power-Flow Algorithm with IDCPFC

  • Shagufta KhanEmail author
  • Suman Bhowmick
  • Tausif Ahmad
Research Article - Electrical Engineering
  • 22 Downloads

Abstract

A unified power-flow algorithm of AC power systems integrated with multi-terminal high-voltage direct current (MTDC) grids incorporating the interline DC power-flow controller (IDCPFC) is presented in this paper. The MTDC grids are based on voltage-sourced converter (VSC) technology. Pulse-width modulation control is employed for the VSCs. As against most of the research works published in this area, in this algorithm, the VSC modulation indices are considered as unknowns. The IDCPFC considered for the power-flow management of the DC grid is a generalized one, with an arbitrary number of DC voltage sources. In the proposed model converter losses are also included. All case studies are carried out in MTDC grids embedded in the IEEE-300 bus test system. For all the case studies, the power-flow algorithms were implemented with MATLAB. In all occurrences, a mismatch error tolerance of \(10^{-10}\) p.u. was selected. Results obtained with case studies on AC–MTDC systems validate the proposed work.

Keywords

MTDC IDCPFC DC grid Power-flow algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Valinejad, J.; Marzband, M.; Akorede, M.F.; Barforoshi, T.: Generation expansion planning in electricity market considering uncertainty in load demand and presence of strategic GENCOs. Electr. Power Syst. Res. 152, 92–104 (2017)CrossRefGoogle Scholar
  3. 3.
    Marzband, M.; Azarinejadian, F.; Savaghebi, M.; Pouresmaeil, E.; Guerredo, J.M.; Lightbody, G.: Smart transactive energy framework in grid connected multiple home microgrids under independent and coalition operations. Renew. Energy 126, 95–106 (2018)CrossRefGoogle Scholar
  4. 4.
    Marzband, M.; Fouladfar, M.H.; Akorede, M.F.; Lightbody, G.; Pouresmaeil, E.: Framework for smart transactive energy in home microgrids considering coalition formation and demand side management. Sustain. Cities Soc. 40, 1 (2018)CrossRefGoogle Scholar
  5. 5.
    Tavakoli, M.; Shokridehaki, F.; Akorede, M.F.; Marzband, M.; Vechiu, I.; Pouresmaeil, E.: CVaR based energy management scheme for optimal resilience and operational cost in commercial building microgrids. Electr. Power Energy Syst. 100, 1–9 (2018)CrossRefGoogle Scholar
  6. 6.
    Marzband, M.; Javadi, M.; Pourmousavi, S.A.; Lightbody, G.: An advanced retail electricity market for active distribution systems and home microgrid interoperability based on game theory. Electr. Power Syst. Res. 157, 187–199 (2018)CrossRefGoogle Scholar
  7. 7.
    Tavakoli, M.; Shokridekhari, E.; Marzband, M.; Godina, R.; Pouresmaeil, E.: A two stage hierarchical control approach for the optimal energy management in commercial building microgrids based on local wind power and PEVs. Sustain. Cities Soc. 41, 332–340 (2018)CrossRefGoogle Scholar
  8. 8.
    Khan, S.; Bhowmick, S.: A generalized power flow model of VSC based Hybrid AC–DC systems integrated with offshore wind farms. IEEE Trans. Sustain. Energy 2018, 1 (2018)CrossRefGoogle Scholar
  9. 9.
    Arrillaga, J.; Liu, Y.H.; Watson, N.R.: Flexible Power Transmission: The HVDC Options. Wiley, London (2007)CrossRefGoogle Scholar
  10. 10.
    Sood, V.K.: DVDC and FACTS Controllers—Applications of Static Converters in Power Systems. Kluwer, Dordrecht (2004)Google Scholar
  11. 11.
    Acha, E.; Agelidis, V.G.; Lara, O.Anaya; Miller, T.J.E.: Power Electronic Control in Electrical Systems. Newnes, Butterworth (2002)Google Scholar
  12. 12.
    Padiyar, K.R.: HVDC Power Transmission Systems, 2nd edn. New Age International Publishers, London (2012)Google Scholar
  13. 13.
    Yazdani, A.; Iravani, R.: Voltage-Sourced Converters in Power Systems: Modeling, Control and Applications, p. 171. Wiley, London (2010)CrossRefGoogle Scholar
  14. 14.
    Flourentzou, N.; Agelidis, V.G.; Demetriades, G.D.: VSC-based HVDC power transmission systems: an overview. IEEE Trans. Power Electron. 24(3), 592–602 (2009)CrossRefGoogle Scholar
  15. 15.
    Asplund, G.: Application of HVDC light to power system enhancement. In: Proceeding of IEEE PES Winter Meeting (January 2000)Google Scholar
  16. 16.
    Blau, J.: Europe plans a north sea grid. IEEE Spect. 1, 12–13 (2010)CrossRefGoogle Scholar
  17. 17.
    Haileselassie, T.M.; Uhlen, K.: Power system security in a meshed north sea HVDC grid. IEEE Proc. Invited Pap. 101(4), 978–990 (2013)CrossRefGoogle Scholar
  18. 18.
    Zhang, X.P.: Multiterminal voltage-sourced converter-based HVDC models for power flow analysis. IEEE Trans. Power Syst. 19(4), 1877–1884 (2004)CrossRefGoogle Scholar
  19. 19.
    Angeles-Camacho, C.; Tortelli, O.L.; Acha, E.; Fuerte-Esquivel, C.R.: Inclusion of a high voltage DC voltage source converter model in a Newton raphson power flow algorithm. Proc. Inst. Elect. Eng. Gen., Transm. Distrib. 150(6), 691–696 (2003)CrossRefGoogle Scholar
  20. 20.
    Baradar, M.; Ghandhari, M.: A multi-option unified power flow approach for hybrid AC/DC grids incorporating multi-terminal VSC-HVDC. IEEE Trans. Power Syst. 28(3), 2376–2383 (2013)CrossRefGoogle Scholar
  21. 21.
    Gengyin, L.; Ming, Z.; Jie, H.; Guangkai, L.; Haifeng, L.: Power flow calculation of power systems incorporating VSC-HVDC. In: Proceeding of International Conference Power System Technology (PowerCon), vol. 2, pp. 1562–1566 (2004)Google Scholar
  22. 22.
    Khan, S.; Bhowmick, S.: A novel power flow model of multiterminal VSC HVDC systems. Electr. Power Syst. Res. 133, 219–227 (2016)CrossRefGoogle Scholar
  23. 23.
    Jovcic, D.; Hajian, M.; Zhang, H.; Asplund, G.: Power flow control in dc transmission grids using mechanical and semiconductor based DC/DC devices. In: Proceeding of IET International Conference AC DC Power Transmission, pp. 1–6 (2012)Google Scholar
  24. 24.
    Mu, Q.; Liang, J.; Li, Y.; Zhou, X.: Power flow control devices in DC grids. In: Proceeding of IEEE Power Energy Society General Meeting, pp. 1–7 (2012)Google Scholar
  25. 25.
    Jovcic, D.; Ooi, B.: Developing DC transmission networks using DC transformers. IEEE Trans. Power Del. 25(4), 2535–2543 (2010)CrossRefGoogle Scholar
  26. 26.
    Jovcic, D.; Zhang, L.: LCL DC/DC converter for DC grids. IEEE Trans. Power Del. 28(4), 2071–2079 (2013)CrossRefGoogle Scholar
  27. 27.
    Jovcic, D.; Lin, W.: Multiport high power LCL DC hub for use in DC transmission grids. IEEE Trans. Power Del. 29(2), 760–768 (2014)CrossRefGoogle Scholar
  28. 28.
    Kish, G.; Ranjram, M.; Lehn, P.: A modular multilevel DC/DC converter with fault blocking capability for HVDC interconnects. IEEE Trans. Power Electron. 30(1), 148–162 (2015)CrossRefGoogle Scholar
  29. 29.
    Veilleux, E.; Ooi, B.: Multiterminal HVDC with thyristor power flow controller. IEEE Trans. Power Del. 27(3), 1205–1212 (2012)CrossRefGoogle Scholar
  30. 30.
    Series Connected DC/DC Converter for Controlling the Power Flow in a HVDC Power Transmission System, PCT WO 2012/037964A1 (2012)Google Scholar
  31. 31.
    An Arrangement for Controlling the Electrical Power Transmission in a HVDC Power Transmission Systems, PCT WO 2013/091700A1 (2013)Google Scholar
  32. 32.
    Mu, Q.; Liang, J.; Li, Y.; Zhou, X.: Power flow control devices in DC grids. In: IEEE Power and Energy Society General Meeting, pp. 1–7 (2012)Google Scholar
  33. 33.
    Gyugyi, L.; Sen, K.K.; Schauder, C.D.: The interline power flow controller concept: a new approach to power flow management in transmission systems. IEEE Trans. Power Del. 14(3), 1115–1123 (1999)CrossRefGoogle Scholar
  34. 34.
    Barker, C.; Whitehouse, R.: A current flow controller for use in HVDC grids. In: IET International Conference on AC and DC Power Transmission (ACDC), pp. 1–5 (2012)Google Scholar
  35. 35.
    Whitehouse, R.; Barker, C.: Current flow controller. US Patent Application, 2015/0180231 A1 (2015)Google Scholar
  36. 36.
    Deng, N.; Wang, P.; Zhang, X.; Tang, G.; Cao, J.: A DC current flow controller for meshed modular multilevel converter multiterminal HVDC grids. CSEE J. Power Energy Syst. 1(1), 43–51 (2015)CrossRefGoogle Scholar
  37. 37.
    Chen, W.; Zhu, X.; Yao, L.Y.; Ruan, X.; Wang, Z.; Cao, Y.: An interline DC power flow controller (IDCPFC) for multi-terminal HVDC system. IEEE Trans. Power Del. 30(4), 2027–2036 (2015)CrossRefGoogle Scholar
  38. 38.
    Cao, J.; Du, W.; Wang, H.F.: Minimization of transmission loss in meshed AC/DC grids with VSC-MTDC networks. IEEE Trans. Power Syst. 28(3), 3047–3055 (2013)CrossRefGoogle Scholar
  39. 39.
    Daelemans, G.: VSC-HVDC in meshed networks. M.Eng. Thesis, Katholieke Universiteit Leuven, Leuven (2008)Google Scholar
  40. 40.

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Galgotias UniversityGreater NoidaIndia
  2. 2.Delhi Technological UniversityDelhiIndia
  3. 3.Motihari College of EngineeringMotihariIndia

Personalised recommendations