Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 655–662 | Cite as

Stimulated Raman Scattering During Pulsed Laser-Induced Co-polymerization of n-Butyl Methacrylate and n-Octadecyl Methacrylate

  • Asma Batool
  • Asghari Gul
  • Saira Arif
  • Mohammad Aslam KhanEmail author
Research Article - SCI-Physics


We report simultaneous photoinitiated polymerization and stimulated Raman scattering (SRS) from polymers of methacrylate monomers using a Q-switched Nd: YAG laser (second harmonic radiation at 532 nm). The monomers used were n-butyl methacrylate and n-octadecyl methacrylate together with benzoyl peroxide as initiator, dissolved in ethanol. During the interaction of focused laser pulses with the mixtures of monomers, a strong signal in the forward direction at 630.4 nm was recorded that corresponds to SRS signal originating from Raman active vibrational stretching modes of \({\varvec{\nu }}{{\varvec{s}}}\)(C–H) of \(-\hbox {OCH}_{3}\) with \({\varvec{\nu }}{{\varvec{s}}}\)(C–H) of \(\alpha \hbox {-CH}_{3}\) and \({\varvec{\nu }}{{\varvec{a}}}(\hbox {CH}_{2})\) groups at \(2957\,\hbox {cm}^{-1}\) in the polymethacrylate. In addition, another SRS signal at 773.2 nm corresponding to the first overtone of the referred Raman mode was also recorded. Results are presented where different compositional mixtures of the polymerizing monomers, and different laser energies were used mainly for the strongest SRS intensities that could possibly be an index of the rate and extent of polymerization.


Stimulated Raman scattering Laser–matter interaction Photochemistry Laser-induced polymerization Butyl methacrylate and octadecyl methacrylate Real-time monitoring of polymerization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was partly supported by Higher Education Commission (Pakistan) under Project #: 2154/NRPU/R and D/HEC/12. The Chemistry Department, Quaid-i-Azam University (Islamabad, Pakistan) is acknowledged for their support through provision of chemicals and help with sample analysis.


  1. 1.
    Dietze, D.R.; Mathies, R.A.: Femtosecond stimulated Raman spectroscopy. Chem. Phys. Chem. 17, 1224–1251 (2016)CrossRefGoogle Scholar
  2. 2.
    Chng, B.X.K.; van Dijk, T.; Bhargava, R.; Carney, P.S.: Enhancement and extinction effects in surface-enhanced stimulated Raman spectroscopy. Phys. Chem. Chem. Phys. 17, 21348–21355 (2015)CrossRefGoogle Scholar
  3. 3.
    Fu, D.: Quantitative chemical imaging with stimulated Raman scattering microscopy. Curr. Opin. Chem. Biol. 39, 24–31 (2017)CrossRefGoogle Scholar
  4. 4.
    Mašek, M.; Rohlena, K.: Intensity dependence of non-linear kinetic behaviour of stimulated Raman scattering in fusion relevant plasmas. Eur. Phys. J. D 69, 109 (2015)CrossRefGoogle Scholar
  5. 5.
    Schnabel, W.: Polymers and Light: Fundamentals and Technical Applications. Wiley, Weinheim (2007)CrossRefGoogle Scholar
  6. 6.
    Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R.: Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117, 10212–10290 (2017)CrossRefGoogle Scholar
  7. 7.
    Lin, J.T.; Cheng, D.C.: Optimal focusing and scaling law for uniform photo-polymerization in a thick medium using a focused UV laser. Polymers 6, 552–564 (2014)CrossRefGoogle Scholar
  8. 8.
    Beuermann, S.; Buback, M.: Rate coefficients of free-radical polymerization deduced from pulsed laser experiments. Prog. Polym. Sci. 27, 191–254 (2002)CrossRefGoogle Scholar
  9. 9.
    Stankevičius, E.; Daugnoraitė, E.; Selskis, A.; Juodkazis, S.; Račiukaitis, G.: Photo-polymerization differences by using nanosecond and picosecond laser pulses. Opt. Express 25, 4819–4830 (2017)CrossRefGoogle Scholar
  10. 10.
    Buback, M.; Kuelpmann, A.: A suitable photoinitiator for pulsed laser-induced free-radical polymerization. Macromol. Chem. Phys. 204, 632–637 (2003)CrossRefGoogle Scholar
  11. 11.
    Serbin, J.; Egbert, A.; Ostendorf, A.; Chichkov, B.N.; Houbertz, R.; Domann, G.; Schulz, J.; Cronauer, C.; Fröhlich, L.; Popall, M.: Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics. Opt. Lett. 28, 301–303 (2003)CrossRefGoogle Scholar
  12. 12.
    Hussain, M.S.; Awan, S.A.; Khan, M.A.; Hamid, H.: Pulsed laser polymerization of methyl metharylate using Wilkinson’s catalyst as a photoinitiator. In: Belfield, K.D., Crivello, J.V. (eds.) Photoinitiated Polymerization, vol. 847, pp. 451–461. ACS Publications, Washington (2003)CrossRefGoogle Scholar
  13. 13.
    Hussain, M.S.; Awan, S.A.; Seddigi, Z.S.; Ashraf, M.W.; Khan, M.A.: Chain transfer in pulsed laser polymerization of methylmethacrylate in the presence of different cobalt (II)[Co (dmg-2H) 2 (BF2) 2] and [Co (afdo-2H) 2 (BF2) 2]. J. Photochem. Photobiol. A 184, 58–65 (2006)CrossRefGoogle Scholar
  14. 14.
    Buback, M.: Propagation kinetics in radical polymerization studied via pulsed laser techniques. Macromol. Symposia 275–276, 90–101 (2009)CrossRefGoogle Scholar
  15. 15.
    Kockler, K.B.; Haehnel, A.P.; Junkers, T.; Barner-Kowollik, C.: Determining free-radical propagation rate coefficients with high-frequency lasers: current status and future perspectives. Macromol. Rapid Commun. 37, 123–134 (2015)CrossRefGoogle Scholar
  16. 16.
    Fouassier, J.P.; Lalevée, J.: Photoinitiators for Polymer Synthesis. Wiley, New York (2013)Google Scholar
  17. 17.
    Nikitin, A.N.; Hutchinson, R.A.; Buback, M.; Hesse, P.: Determination of intramolecular chain transfer and midchain radical propagation rate coefficients for butyl acrylate by pulsed laser polymerization. Macromolecules 40, 8631–8641 (2007)CrossRefGoogle Scholar
  18. 18.
    Jallapuram, R.; Naydenova, I.; Byrne, H.J.; Martin, S.; Howard, R.; Toal, V.: Raman spectroscopy for the characterization of the polymerization rate in an acrylamide-based photopolymer. Appl. Opt. 47, 206–212 (2008)CrossRefGoogle Scholar
  19. 19.
    Brun, N.; Youssef, I.; Chevrel, M.C.; Chapron, D.; Schrauwen, C.; Hoppe, S.; Bourson, P.; Durand, A.: In situ monitoring of styrene polymerization using Raman spectroscopy. Multi-scale approach of homogeneous and heterogeneous polymerization processes. J. Raman Spectrosc. 44, 909–915 (2013)CrossRefGoogle Scholar
  20. 20.
    Pallikari, F.; Chondrokoukis, G.; Rebelakis, M.; Kotsalas, Y.: Raman spectroscopy: a technique for estimating extent of polymerization in PMMA. Mater. Res. Innov. 4, 89–92 (2001)CrossRefGoogle Scholar
  21. 21.
    Eckhardt, G.; Hellwarth, R.; McClung, F.; Schwarz, S.; Weiner, D.; Woodbury, E.: Stimulated Raman scattering from organic liquids. Phys. Rev. Lett. 9, 455–457 (1962)CrossRefGoogle Scholar
  22. 22.
    Colles, M.; Griffiths, J.: Relative and absolute Raman scattering cross sections in liquids. J. Chem. Phys. 56, 3384–3391 (1972)CrossRefGoogle Scholar
  23. 23.
    Thomas, K.; Sheeba, M.; Nampoori, V.; Vallabhan, C.; Radhakrishnan, P.: Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser. J. Opt. A Pure Appl. Opt. 10, 055303 (2008)CrossRefGoogle Scholar
  24. 24.
    Yiou, S.; Delaye, P.; Rouvie, A.; Chinaud, J.; Frey, R.; Roosen, G.; Viale, P.; Février, S.; Roy, P.; Auguste, J.L.: Stimulated Raman scattering in an ethanol core microstructured optical fiber. Opt. Exp. 13, 4786–4791 (2005)CrossRefGoogle Scholar
  25. 25.
    Xu, X.: Stimulated Raman spectrum threshold in poly (methyl methacrylate) optical fibers. Opt. Commun. 199, 89–93 (2001)CrossRefGoogle Scholar
  26. 26.
    Liu, W.; Ma, P.; Lv, H.; Xu, J.; Zhou, P.; Jiang, Z.: General analysis of SRS-limited high-power fiber lasers and design strategy. Opt. Express 24, 26715–26721 (2016)CrossRefGoogle Scholar
  27. 27.
    Lai, E.P.; Ghaziaskar, H.S.: Noninvasive spectroscopic detection of bulk polymerization by stimulated Raman scattering. Appl. Spectrosc. 48, 1011–1014 (1994)CrossRefGoogle Scholar
  28. 28.
    Batool, A.; Akhter, Z.; Tabassam, L.; Qureshi, R.; Khan, M.A.; Gul, A.: Experimental and theoretical evidences for stability of intermediates and reaction path during pulsed laser photo-polymerization of acrylate monomers. J. Chem. Soc. Pak. 39, 190–196 (2017)Google Scholar
  29. 29.
    Penano, J.R.; Sprangle, P.; Serafim, P.; Hafizi, B.; Ting, A.: Stimulated Raman scattering of intense laser pulses in air. Phys. Rev. E 68, 056502 (2003)CrossRefGoogle Scholar
  30. 30.
    Seymour, R.B.; Carraher, C.E.: Polymer Chemistry, 6th edn. Marcel Dekker, New York (1981)Google Scholar
  31. 31.
    Raymer, M.; Mostowski, J.; Carlsten, J.: Theory of stimulated Raman scattering with broad-band lasers. Phys. Rev. A 19, 2304–2316 (1979)CrossRefGoogle Scholar
  32. 32.
    Qin, S.; Saget, J.; Pyun, J.; Jia, S.; Kowalewski, T.; Matyjaszewski, K.: Synthesis of block, statistical, and gradient copolymers from octadecyl methacrylates using atom transfer radical polymerization. Macromolecules 36, 8969–8977 (2003)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Asma Batool
    • 1
  • Asghari Gul
    • 1
    • 2
  • Saira Arif
    • 1
    • 2
  • Mohammad Aslam Khan
    • 1
    Email author
  1. 1.Department of PhysicsCOMSATS UniversityIslamabadPakistan
  2. 2.Department of ChemistryCOMSATS UniversityIslamabadPakistan

Personalised recommendations