Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1631–1648 | Cite as

Frequency and Deflection Responses of Shear Deformable Skew Sandwich Curved Shell Panel: A Finite Element Approach

  • Pankaj V. Katariya
  • Subrata K. PandaEmail author
Research Article - Mechanical Engineering


The eigenfrequency and transverse deflection values of the sandwich shell panel structure including the skew angle effect are examined numerically in this article. The sandwich shell panel is modelled via the higher-order displacement polynomial functions in the framework of the equivalent single-layer theory including the thickness stretching term effect. The numerical solutions are obtained via an own finite element code (MATLAB platform) in association with the derived mathematical model. The variational technique has been adopted to solve the sandwich structural equilibrium equation and the eigenvalue parameter under the influence of mechanical loading. The solution stability including the validity of the current numerical solutions has been verified via solving the adequate number of examples as same as the available published data. Finally, the current model is extended further to explore the probable effect of one or more parameters (geometrical, material and end constraint) on the final structural performances (frequency, deflection and stresses) including the fibre skew angle.


Skew sandwich composite Bending Vibration Skew angle Finite element analysis HSDT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pagano, N.J.: Exact solution of rectangular bidirectional composites and sandwich plates. J. Compos. Mater. 4, 20–34 (1970)Google Scholar
  2. 2.
    Pandya, B.N.; Kant, T.: Higher-order shear deformation theories for flexure of sandwich plates-finite element evaluations. Int. J. Solids Struct. 24, 1267–1286 (1988)zbMATHGoogle Scholar
  3. 3.
    Kremer, J.M.; Shabana, A.A.; Widera, G.E.: Large reference displacement analysis of composite plates part I: finite element formulation. Int. J. Numer. Methods Eng. 36, 1–16 (1993)zbMATHGoogle Scholar
  4. 4.
    Kremer, J.M.; Shabana, A.A.; Widera, G.E.: Large reference displacement analysis of composite plates part II: computer implementation. Int. J. Numer. Methods Eng. 36, 17–42 (1993)zbMATHGoogle Scholar
  5. 5.
    Wu, C.P.; Kuo, H.C.: An interlaminar stress mixed finite element method for the analysis of thick laminated composite plates. Compos. Struct. 24, 29–42 (1993)Google Scholar
  6. 6.
    Cheung, Y.K.; Zhang, Y.X.; Wanji, C.: The application of a refined non-conforming quadrilateral plate bending element in thin plate vibration and stability analysis. Finite Elem. Anal. Des. 34, 175–191 (2000)zbMATHGoogle Scholar
  7. 7.
    Wang, C.M.; Ang, K.K.; Yang, L.: Free vibration of skew sandwich plates with laminated facings. J. Sound Vib. 235(2), 317–340 (2000)Google Scholar
  8. 8.
    Ramtekkar, G.S.; Desai, Y.M.; Shah, A.H.: Mixed finite element model for thick composite laminated plates. Mech. Adv. Mater. Struct. 9, 133–156 (2002)Google Scholar
  9. 9.
    Chakrabarti, A.; Sheikh, A.H.: Analysis of laminated sandwich plates based on interlaminar shear stress continuous plate theory. ASCE J. Eng. Mech. 4, 377–384 (2005)Google Scholar
  10. 10.
    Chakrabarti, A.; Sheikh, A.H.: Vibration of composites and sandwich laminates subjected to in-plane partial edge load. Compos. Struct. 71, 199–209 (2005)zbMATHGoogle Scholar
  11. 11.
    Garg, A.K.; Khare, R.K.; Kant, T.: Higher-order closed-form solutions for free vibration of laminated composite and sandwich shells. J. Sandw. Struct. Mater. 8, 205–235 (2006)Google Scholar
  12. 12.
    Woo, J.; Meguid, S.A.; Ong, L.S.: Nonlinear free vibration behavior of functionally graded plates. J. Sound Vib. 289(3), 595–611 (2006)Google Scholar
  13. 13.
    Abdul-Razzak, A.A.; Haido, J.H.: Free vibration analysis of rectangular plates using higher order finite layer method. Iraq Aca. Sci. J. 15(3), 19–32 (2007)Google Scholar
  14. 14.
    Kapuria, S.; Kulkarni, S.D.: An improved discrete Kirchhoff element based on third order zigzag theory for static analysis of composite and sandwich plates. Int. J. Numer. Methods Eng. 69, 1948–1981 (2007)zbMATHGoogle Scholar
  15. 15.
    Kulkarni, S.D.; Kapuria, S.: A new discrete Kirchhoff quadrilateral element based on the third order theory for composite plates. Comput. Mech. 39, 237–246 (2007)zbMATHGoogle Scholar
  16. 16.
    Kant, T.; Gupta, A.B.; Pendhari, S.S.; Desai, Y.M.: Elasticity solution for cross-ply composite and sandwich laminates. Compos. Struct. 83, 13–24 (2008)Google Scholar
  17. 17.
    Zhu, Z.H.; Meguid, S.A.: Vibration analysis of a new curved beam element. J. Sound Vib. 309(1–2), 86–95 (2008)Google Scholar
  18. 18.
    Shabana, A.A.: On the definition of the natural frequency of oscillations in nonlinear large rotation problems. J. Sound Vib. 329(15), 3171–3181 (2010)Google Scholar
  19. 19.
    Merdaci, S.; Tounsi, A.; Houari, M.S.A.; Mechab, I.; Hebali, H.; Benyoucef, S.: Two new refined shear displacement models for functionally graded sandwich plates. Arch. Appl. Mech. 81, 1507–1522 (2011)zbMATHGoogle Scholar
  20. 20.
    Rahmani, O.; Khalili, S.M.R.; Thomsen, O.T.: A high-order theory for the analysis of circular cylindrical composite sandwich shells with transversely compliant core subjected to external loads. Compos. Struct. 94, 2129–2142 (2012)Google Scholar
  21. 21.
    Boscolo, M.: Analytical solution for free vibration analysis of composite plates with layer-wise displacement assumptions. Compos. Struct. 100, 493–510 (2013)Google Scholar
  22. 22.
    Daouadji, T.H.; Tounsi, A.; Bedia, E.A.A.: Analytical solution for bending analysis of functionally graded plates. Sci. Iran. B. 20(3), 516–523 (2013)Google Scholar
  23. 23.
    Houaria, M.S.A.; Tounsi, A.; Beg, O.A.: Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory. Int. J. Mech. Sci. 76, 102–111 (2013)Google Scholar
  24. 24.
    Kumar, A.; Chakrabarti, A.; Bhargava, P.: Finite element analysis of laminated composite and sandwich shells using higher order zigzag theory. Compos. Struct. 106, 270–281 (2013)Google Scholar
  25. 25.
    Mostafa, A.; Shankar, K.; Morozov, E.V.: Insight into the shear behaviour of composite sandwich panels with foam core. Mater. Des. 50, 92–101 (2013)Google Scholar
  26. 26.
    Topal, U.; Uzman, U.: Frequency optimization of laminated composite skew sandwich plates. Indian J. Eng. Mater. S. 20, 101–107 (2013)Google Scholar
  27. 27.
    Tounsi, A.; Houari, M.S.A.; Benyoucef, S.; Bedia, E.A.A.: A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates. Aerosp. Sci. Technol. 24, 209–220 (2013)Google Scholar
  28. 28.
    Upadhyay, A.K.; Shukla, K.K.: Non-linear static and dynamic analysis of skew sandwich plates. Compos. Struct. 105, 141–148 (2013)Google Scholar
  29. 29.
    Belabed, Z.; Houari, M.S.A.; Tounsi, A.; Mahmoud, S.R.; Beg, O.A.: An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates. Compos. Part B-Eng. 60, 274–283 (2014)Google Scholar
  30. 30.
    Chalak, H.D.; Chakrabarti, A.; Sheikh, A.H.; Iqbal, M.A.: \(\text{ C }^{0}\) FE model based on HOZT for the analysis of laminated soft core skew sandwich plates: bending and vibration. Appl. Math. Model. 38(4), 1211–1223 (2014)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Liu, C.; Zhang, Y.X.: Numerical modelling of impact response of aluminium foam/FML sandwich panels. In: Recent Advances in Structural Integrity Analysis—International Congress (APCF/SIF-2014, 09–11 December 2014, Sydney), pp. 163–167 (2014)Google Scholar
  32. 32.
    Mohammadnejad, M.; Saffari, H.; Bagheripour, M.H.: An analytical approach to vibration analysis of beams with variable properties. Arab. J. Sci. Eng. 39(4), 2561–2572 (2014)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Patel, B.P.; Khan, K.; Nath, Y.: A new constitutive model for bimodular laminated structures: application to free vibrations of conical/cylindrical panels. Compos. Struct. 110, 183–191 (2014)Google Scholar
  34. 34.
    Singh, V.K.; Panda, S.K.: Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels. Thin Walled Struct. 85, 341–349 (2014)Google Scholar
  35. 35.
    Srinivasa, C.V.; Suresh, Y.J.; Prema Kumar, W.P.: Experimental and finite element studies on free vibration of skew plates. Int. J. Adv. Struct. Eng. 6(48), 1–11 (2014)Google Scholar
  36. 36.
    Farhatnia, F.; Babaei, J.; Foroudastan, R.: Thermo-Mechanical nonlinear bending analysis of functionally graded thick circular plates resting on Winkler foundation based on sinusoidal shear deformation theory. Arab. J. Sci. Eng. 43, 1137–1151 (2018)Google Scholar
  37. 37.
    Sahoo, S.S.; Panda, S.K.; Mahapatra, T.R.: Static, free vibration and transient response of laminated composite curved shallow panel—an experimental approach. Eur. J. Mech. A. Solids 59, 95–113 (2016)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Mehar, K.; Panda, S.K.: Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory. IOP Conf. Ser. Mater. Sci. Eng. 115(1), 012014 (2016). Google Scholar
  39. 39.
    Liew, K.M.; He, X.Q.; Tan, M.J.; Lim, H.K.: Dynamic analysis of laminated composite plates with piezoelectric sensor/actuator patches using the FSDT mesh-free method. Int. J. Mech. Sci. 46, 411–431 (2004)zbMATHGoogle Scholar
  40. 40.
    Baltacıoglu, A.K.; Akgoz, B.; Civalek, O.: Nonlinear static response of laminated composite plates by discrete singular convolution method. Compos. Struct. 93, 153–161 (2010)Google Scholar
  41. 41.
    Gürses, M.; Civalek, O.; Korkmaz, A.; Ersoy, H.: Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory. Int. J. Numer. Methods Eng. 79(3), 290–313 (2009)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Baltacıoglu, A.K.; Civalek, O.; Akgoz, B.; Demir, F.: Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution. Int. J. Pres. Ves. Pip. 88, 290–300 (2011)Google Scholar
  43. 43.
    Xiang, Y.; Ma, Y.F.; Kitiornchai, S.; Lim, C.W.; Lau, C.W.H.: Exact solutions for vibration of cylindrical shells with intermediate ring supports. Int. J. Mech. Sci. 44, 1907–1924 (2002)zbMATHGoogle Scholar
  44. 44.
    Civalek, O.: Analysis of thick rectangular plates with symmetric cross-ply laminates based on first-order shear deformation theory. J. Compos. Mater. 42(26), 2853–2867 (2008)Google Scholar
  45. 45.
    Jin, G.; Te, Y.; Me, X.; Chen, Y.; Su, X.; Xie, X.: A unified approach for the vibration analysis of moderately thick composite laminated cylindrical shells with arbitrary boundary conditions. Int. J. Mech. Sci. 75, 357–376 (2013)Google Scholar
  46. 46.
    Civalek, O.; Korkmaz, A.; Demir, C.: Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on two-opposite edges. Adv. Eng. Softw. 41(4), 557–560 (2010)zbMATHGoogle Scholar
  47. 47.
    Talebitooti, M.: Three-dimensional free vibration analysis of rotating laminated conical shells: layerwise differential quadrature (LW-DQ) method. Arch. Appl. Mech. 83, 765–781 (2013)zbMATHGoogle Scholar
  48. 48.
    Civalek, O.: The determination of frequencies of laminated conical shells via the discrete singular convolution method. J. Mech. Mater. Struct. 1, 163–182 (2006)Google Scholar
  49. 49.
    Civalek, O.: Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method. Compos. Part B-Eng. 111, 45–59 (2017)Google Scholar
  50. 50.
    Bousahla, A.A.; Houari, M.S.A.; Tounsi, A.; Bedia, E.A.A.: A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates. Int. J. Comput. Meth. 11(6), 1350082-1-1350082-18 (2014)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Hebali, H.; Tounsi, A.; Houari, M.S.A.; Bessaim, A.; Bedia, E.A.A.: New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. ASCE J. Eng. Mech. 140(2), 374–383 (2014)Google Scholar
  52. 52.
    Bennoun, M.; Houari, M.S.A.; Tounsi, A.: A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates. Mech. Adv. Mater. Struct. 23(4), 423–431 (2016)Google Scholar
  53. 53.
    Zaoui, F.Z.; Ouinas, D.; Tounsi, A.: New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations. Compos. Part B-Eng. 159, 231–247 (2019)Google Scholar
  54. 54.
    Bellifa, H.; Bakora, A.; Tounsi, A.; Bousahla, A.A.; Mahmoud, S.R.: An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates. Steel Compos. Struct. 25(3), 257–270 (2017)Google Scholar
  55. 55.
    Belabed, Z.; Bousahla, A.A.; Houari, M.S.A.; Tounsi, A.; Mahmoud, S.R.: A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate. Earthq. Struct. 14(2), 103–115 (2018)Google Scholar
  56. 56.
    Kaci, A.; Houari, M.S.A.; Bousahla, A.A.; Tounsi, A.; Mahmoud, S.R.: Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory. Struct. Eng. Mech. 65(5), 621–631 (2018)Google Scholar
  57. 57.
    Abdelaziz, H.H.; Meziane, M.A.A.; Bousahla, A.A.; Tounsi, A.; Mahmoud, S.R.; Alwabli, A.S.: An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions. Steel Compos. Struct. 25(6), 693–704 (2017)Google Scholar
  58. 58.
    Zine, A.; Tounsi, A.; Draiche, K.; Sekkal, M.; Mahmoud, S.R.: A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells. Steel Compos. Struct. 26(2), 125–137 (2018)Google Scholar
  59. 59.
    Karami, B.; Janghorban, M.; Tounsi, A.: Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory. Thin-Walled Struct. 129, 251–264 (2018)Google Scholar
  60. 60.
    Tounsi, A.; Bousahla, A.A.; Houari, M.S.A.: A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium. Smart Struct. Syst. 21(1), 15–25 (2018)Google Scholar
  61. 61.
    Bellifa, H.; Benrahou, K.H.; Bousahla, A.A.; Tounsi, A.; Mahmoud, S.R.: A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams. Struct. Eng. Mech. 62(6), 695–702 (2017)Google Scholar
  62. 62.
    Cook, R.D.; Malkus, D.S.; Plesha, M.E.; Witt, R.J.: Concepts and applications of finite element analysis. Wiley, Singapore (2009)Google Scholar
  63. 63.
    Jones, R.M.: Mechanics of Composite Materials. Taylor and Francis, Philadelphia (1975)Google Scholar
  64. 64.
    Katariya, P.V.: Free vibration and buckling behaviour of laminated composite panel under thermal and mechanical loading. M.Tech. Thesis, NIT Rourkela (2014)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentNIT RourkelaRourkelaIndia

Personalised recommendations