Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1631–1648

# Frequency and Deflection Responses of Shear Deformable Skew Sandwich Curved Shell Panel: A Finite Element Approach

• Pankaj V. Katariya
• Subrata K. Panda
Research Article - Mechanical Engineering

## Abstract

The eigenfrequency and transverse deflection values of the sandwich shell panel structure including the skew angle effect are examined numerically in this article. The sandwich shell panel is modelled via the higher-order displacement polynomial functions in the framework of the equivalent single-layer theory including the thickness stretching term effect. The numerical solutions are obtained via an own finite element code (MATLAB platform) in association with the derived mathematical model. The variational technique has been adopted to solve the sandwich structural equilibrium equation and the eigenvalue parameter under the influence of mechanical loading. The solution stability including the validity of the current numerical solutions has been verified via solving the adequate number of examples as same as the available published data. Finally, the current model is extended further to explore the probable effect of one or more parameters (geometrical, material and end constraint) on the final structural performances (frequency, deflection and stresses) including the fibre skew angle.

## Keywords

Skew sandwich composite Bending Vibration Skew angle Finite element analysis HSDT

## References

1. 1.
Pagano, N.J.: Exact solution of rectangular bidirectional composites and sandwich plates. J. Compos. Mater. 4, 20–34 (1970)Google Scholar
2. 2.
Pandya, B.N.; Kant, T.: Higher-order shear deformation theories for flexure of sandwich plates-finite element evaluations. Int. J. Solids Struct. 24, 1267–1286 (1988)
3. 3.
Kremer, J.M.; Shabana, A.A.; Widera, G.E.: Large reference displacement analysis of composite plates part I: finite element formulation. Int. J. Numer. Methods Eng. 36, 1–16 (1993)
4. 4.
Kremer, J.M.; Shabana, A.A.; Widera, G.E.: Large reference displacement analysis of composite plates part II: computer implementation. Int. J. Numer. Methods Eng. 36, 17–42 (1993)
5. 5.
Wu, C.P.; Kuo, H.C.: An interlaminar stress mixed finite element method for the analysis of thick laminated composite plates. Compos. Struct. 24, 29–42 (1993)Google Scholar
6. 6.
Cheung, Y.K.; Zhang, Y.X.; Wanji, C.: The application of a refined non-conforming quadrilateral plate bending element in thin plate vibration and stability analysis. Finite Elem. Anal. Des. 34, 175–191 (2000)
7. 7.
Wang, C.M.; Ang, K.K.; Yang, L.: Free vibration of skew sandwich plates with laminated facings. J. Sound Vib. 235(2), 317–340 (2000)Google Scholar
8. 8.
Ramtekkar, G.S.; Desai, Y.M.; Shah, A.H.: Mixed finite element model for thick composite laminated plates. Mech. Adv. Mater. Struct. 9, 133–156 (2002)Google Scholar
9. 9.
Chakrabarti, A.; Sheikh, A.H.: Analysis of laminated sandwich plates based on interlaminar shear stress continuous plate theory. ASCE J. Eng. Mech. 4, 377–384 (2005)Google Scholar
10. 10.
Chakrabarti, A.; Sheikh, A.H.: Vibration of composites and sandwich laminates subjected to in-plane partial edge load. Compos. Struct. 71, 199–209 (2005)
11. 11.
Garg, A.K.; Khare, R.K.; Kant, T.: Higher-order closed-form solutions for free vibration of laminated composite and sandwich shells. J. Sandw. Struct. Mater. 8, 205–235 (2006)Google Scholar
12. 12.
Woo, J.; Meguid, S.A.; Ong, L.S.: Nonlinear free vibration behavior of functionally graded plates. J. Sound Vib. 289(3), 595–611 (2006)Google Scholar
13. 13.
Abdul-Razzak, A.A.; Haido, J.H.: Free vibration analysis of rectangular plates using higher order finite layer method. Iraq Aca. Sci. J. 15(3), 19–32 (2007)Google Scholar
14. 14.
Kapuria, S.; Kulkarni, S.D.: An improved discrete Kirchhoff element based on third order zigzag theory for static analysis of composite and sandwich plates. Int. J. Numer. Methods Eng. 69, 1948–1981 (2007)
15. 15.
Kulkarni, S.D.; Kapuria, S.: A new discrete Kirchhoff quadrilateral element based on the third order theory for composite plates. Comput. Mech. 39, 237–246 (2007)
16. 16.
Kant, T.; Gupta, A.B.; Pendhari, S.S.; Desai, Y.M.: Elasticity solution for cross-ply composite and sandwich laminates. Compos. Struct. 83, 13–24 (2008)Google Scholar
17. 17.
Zhu, Z.H.; Meguid, S.A.: Vibration analysis of a new curved beam element. J. Sound Vib. 309(1–2), 86–95 (2008)Google Scholar
18. 18.
Shabana, A.A.: On the definition of the natural frequency of oscillations in nonlinear large rotation problems. J. Sound Vib. 329(15), 3171–3181 (2010)Google Scholar
19. 19.
Merdaci, S.; Tounsi, A.; Houari, M.S.A.; Mechab, I.; Hebali, H.; Benyoucef, S.: Two new refined shear displacement models for functionally graded sandwich plates. Arch. Appl. Mech. 81, 1507–1522 (2011)
20. 20.
Rahmani, O.; Khalili, S.M.R.; Thomsen, O.T.: A high-order theory for the analysis of circular cylindrical composite sandwich shells with transversely compliant core subjected to external loads. Compos. Struct. 94, 2129–2142 (2012)Google Scholar
21. 21.
Boscolo, M.: Analytical solution for free vibration analysis of composite plates with layer-wise displacement assumptions. Compos. Struct. 100, 493–510 (2013)Google Scholar
22. 22.
Daouadji, T.H.; Tounsi, A.; Bedia, E.A.A.: Analytical solution for bending analysis of functionally graded plates. Sci. Iran. B. 20(3), 516–523 (2013)Google Scholar
23. 23.
Houaria, M.S.A.; Tounsi, A.; Beg, O.A.: Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory. Int. J. Mech. Sci. 76, 102–111 (2013)Google Scholar
24. 24.
Kumar, A.; Chakrabarti, A.; Bhargava, P.: Finite element analysis of laminated composite and sandwich shells using higher order zigzag theory. Compos. Struct. 106, 270–281 (2013)Google Scholar
25. 25.
Mostafa, A.; Shankar, K.; Morozov, E.V.: Insight into the shear behaviour of composite sandwich panels with foam core. Mater. Des. 50, 92–101 (2013)Google Scholar
26. 26.
Topal, U.; Uzman, U.: Frequency optimization of laminated composite skew sandwich plates. Indian J. Eng. Mater. S. 20, 101–107 (2013)Google Scholar
27. 27.
Tounsi, A.; Houari, M.S.A.; Benyoucef, S.; Bedia, E.A.A.: A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates. Aerosp. Sci. Technol. 24, 209–220 (2013)Google Scholar
28. 28.
Upadhyay, A.K.; Shukla, K.K.: Non-linear static and dynamic analysis of skew sandwich plates. Compos. Struct. 105, 141–148 (2013)Google Scholar
29. 29.
Belabed, Z.; Houari, M.S.A.; Tounsi, A.; Mahmoud, S.R.; Beg, O.A.: An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates. Compos. Part B-Eng. 60, 274–283 (2014)Google Scholar
30. 30.
Chalak, H.D.; Chakrabarti, A.; Sheikh, A.H.; Iqbal, M.A.: $$\text{ C }^{0}$$ FE model based on HOZT for the analysis of laminated soft core skew sandwich plates: bending and vibration. Appl. Math. Model. 38(4), 1211–1223 (2014)
31. 31.
Liu, C.; Zhang, Y.X.: Numerical modelling of impact response of aluminium foam/FML sandwich panels. In: Recent Advances in Structural Integrity Analysis—International Congress (APCF/SIF-2014, 09–11 December 2014, Sydney), pp. 163–167 (2014)Google Scholar
32. 32.
Mohammadnejad, M.; Saffari, H.; Bagheripour, M.H.: An analytical approach to vibration analysis of beams with variable properties. Arab. J. Sci. Eng. 39(4), 2561–2572 (2014)
33. 33.
Patel, B.P.; Khan, K.; Nath, Y.: A new constitutive model for bimodular laminated structures: application to free vibrations of conical/cylindrical panels. Compos. Struct. 110, 183–191 (2014)Google Scholar
34. 34.
Singh, V.K.; Panda, S.K.: Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels. Thin Walled Struct. 85, 341–349 (2014)Google Scholar
35. 35.
Srinivasa, C.V.; Suresh, Y.J.; Prema Kumar, W.P.: Experimental and finite element studies on free vibration of skew plates. Int. J. Adv. Struct. Eng. 6(48), 1–11 (2014)Google Scholar
36. 36.
Farhatnia, F.; Babaei, J.; Foroudastan, R.: Thermo-Mechanical nonlinear bending analysis of functionally graded thick circular plates resting on Winkler foundation based on sinusoidal shear deformation theory. Arab. J. Sci. Eng. 43, 1137–1151 (2018)Google Scholar
37. 37.
Sahoo, S.S.; Panda, S.K.; Mahapatra, T.R.: Static, free vibration and transient response of laminated composite curved shallow panel—an experimental approach. Eur. J. Mech. A. Solids 59, 95–113 (2016)
38. 38.
Mehar, K.; Panda, S.K.: Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory. IOP Conf. Ser. Mater. Sci. Eng. 115(1), 012014 (2016). Google Scholar
39. 39.
Liew, K.M.; He, X.Q.; Tan, M.J.; Lim, H.K.: Dynamic analysis of laminated composite plates with piezoelectric sensor/actuator patches using the FSDT mesh-free method. Int. J. Mech. Sci. 46, 411–431 (2004)
40. 40.
Baltacıoglu, A.K.; Akgoz, B.; Civalek, O.: Nonlinear static response of laminated composite plates by discrete singular convolution method. Compos. Struct. 93, 153–161 (2010)Google Scholar
41. 41.
Gürses, M.; Civalek, O.; Korkmaz, A.; Ersoy, H.: Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory. Int. J. Numer. Methods Eng. 79(3), 290–313 (2009)
42. 42.
Baltacıoglu, A.K.; Civalek, O.; Akgoz, B.; Demir, F.: Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution. Int. J. Pres. Ves. Pip. 88, 290–300 (2011)Google Scholar
43. 43.
Xiang, Y.; Ma, Y.F.; Kitiornchai, S.; Lim, C.W.; Lau, C.W.H.: Exact solutions for vibration of cylindrical shells with intermediate ring supports. Int. J. Mech. Sci. 44, 1907–1924 (2002)
44. 44.
Civalek, O.: Analysis of thick rectangular plates with symmetric cross-ply laminates based on first-order shear deformation theory. J. Compos. Mater. 42(26), 2853–2867 (2008)Google Scholar
45. 45.
Jin, G.; Te, Y.; Me, X.; Chen, Y.; Su, X.; Xie, X.: A unified approach for the vibration analysis of moderately thick composite laminated cylindrical shells with arbitrary boundary conditions. Int. J. Mech. Sci. 75, 357–376 (2013)Google Scholar
46. 46.
Civalek, O.; Korkmaz, A.; Demir, C.: Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on two-opposite edges. Adv. Eng. Softw. 41(4), 557–560 (2010)
47. 47.
Talebitooti, M.: Three-dimensional free vibration analysis of rotating laminated conical shells: layerwise differential quadrature (LW-DQ) method. Arch. Appl. Mech. 83, 765–781 (2013)
48. 48.
Civalek, O.: The determination of frequencies of laminated conical shells via the discrete singular convolution method. J. Mech. Mater. Struct. 1, 163–182 (2006)Google Scholar
49. 49.
Civalek, O.: Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method. Compos. Part B-Eng. 111, 45–59 (2017)Google Scholar
50. 50.
Bousahla, A.A.; Houari, M.S.A.; Tounsi, A.; Bedia, E.A.A.: A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates. Int. J. Comput. Meth. 11(6), 1350082-1-1350082-18 (2014)
51. 51.
Hebali, H.; Tounsi, A.; Houari, M.S.A.; Bessaim, A.; Bedia, E.A.A.: New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. ASCE J. Eng. Mech. 140(2), 374–383 (2014)Google Scholar
52. 52.
Bennoun, M.; Houari, M.S.A.; Tounsi, A.: A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates. Mech. Adv. Mater. Struct. 23(4), 423–431 (2016)Google Scholar
53. 53.
Zaoui, F.Z.; Ouinas, D.; Tounsi, A.: New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations. Compos. Part B-Eng. 159, 231–247 (2019)Google Scholar
54. 54.
Bellifa, H.; Bakora, A.; Tounsi, A.; Bousahla, A.A.; Mahmoud, S.R.: An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates. Steel Compos. Struct. 25(3), 257–270 (2017)Google Scholar
55. 55.
Belabed, Z.; Bousahla, A.A.; Houari, M.S.A.; Tounsi, A.; Mahmoud, S.R.: A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate. Earthq. Struct. 14(2), 103–115 (2018)Google Scholar
56. 56.
Kaci, A.; Houari, M.S.A.; Bousahla, A.A.; Tounsi, A.; Mahmoud, S.R.: Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory. Struct. Eng. Mech. 65(5), 621–631 (2018)Google Scholar
57. 57.
Abdelaziz, H.H.; Meziane, M.A.A.; Bousahla, A.A.; Tounsi, A.; Mahmoud, S.R.; Alwabli, A.S.: An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions. Steel Compos. Struct. 25(6), 693–704 (2017)Google Scholar
58. 58.
Zine, A.; Tounsi, A.; Draiche, K.; Sekkal, M.; Mahmoud, S.R.: A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells. Steel Compos. Struct. 26(2), 125–137 (2018)Google Scholar
59. 59.
Karami, B.; Janghorban, M.; Tounsi, A.: Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory. Thin-Walled Struct. 129, 251–264 (2018)Google Scholar
60. 60.
Tounsi, A.; Bousahla, A.A.; Houari, M.S.A.: A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium. Smart Struct. Syst. 21(1), 15–25 (2018)Google Scholar
61. 61.
Bellifa, H.; Benrahou, K.H.; Bousahla, A.A.; Tounsi, A.; Mahmoud, S.R.: A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams. Struct. Eng. Mech. 62(6), 695–702 (2017)Google Scholar
62. 62.
Cook, R.D.; Malkus, D.S.; Plesha, M.E.; Witt, R.J.: Concepts and applications of finite element analysis. Wiley, Singapore (2009)Google Scholar
63. 63.
Jones, R.M.: Mechanics of Composite Materials. Taylor and Francis, Philadelphia (1975)Google Scholar
64. 64.
Katariya, P.V.: Free vibration and buckling behaviour of laminated composite panel under thermal and mechanical loading. M.Tech. Thesis, NIT Rourkela (2014)Google Scholar