Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1553–1568 | Cite as

Electro-discharge Machining Performance of Ti–6Al–4V Alloy: Studies on Parametric Effect and Phenomenon of Electrode Wear

  • Manoj Kumar
  • Saurav DattaEmail author
  • Rajneesh Kumar
Research Article - Mechanical Engineering


In the present work, machinability of titanium alloy (Ti–6Al–4V) is examined during electro-discharge machining (EDM). Experiments are conducted by varying peak discharge current and pulse-on duration; the EDM performance is assessed in terms of material removal efficiency, and rate of tool wear. Surface integrity of the machined specimen is evaluated in purview of surface morphology and topographical features including surface roughness, surface crack density, white layer thickness, material migration, phase transformation, residual stress, and microindentation hardness. Effects of input parameters on EDM performance of Ti–6Al–4V are discussed. Phenomenon of tool wear during EDM operation is interpreted with carbide formation at the bottom surface of the tool electrode. Maximum material removal rate (\(\sim 2.71\,\hbox {mm}^{3}/\hbox {min}\)) is obtained at (\({I}_\mathrm{p}=25\,\hbox {A}\), \(\hbox {Ton}=200\,\upmu \hbox {s}\)). Surface roughness of the EDMed specimen varies from 2.26 to \(4.08\,\upmu \hbox {m}\). The lowest energy input (\({I}_\mathrm{p}=6\,\hbox {A}\), \(\hbox {Ton}=50\,\upmu \hbox {s}\)) achieves minimum surface roughness (\({R}_{\mathrm{a}}\sim 2.26\,\upmu \hbox {m}\)). Microhardness values are found falling in the rage from 355.66 to 418.66 HV which is relatively more than ‘as-received’ parent material. White layers obtained in different parametric settings vary from 15.63 to \(150\,\upmu \hbox {m}\)). Higher energy input promotes formation of thicker white layer. Variation of surface crack density is observed within rage 0.000642 to \(0.003369\,\upmu \hbox {m}/\upmu \hbox {m}^{2}\). Significant amount of C, Cu, and O immigration is detected through EDS analysis of the machined surface. EDMed surface along with bottom surface of worn out tool electrode are enriched with hard carbide layers.


Machinability Ti–6Al–4V Electro-discharge machining Surface integrity Morphology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, S.L.; Yan, B.H.; Huang, F.Y.: Influence of kerosene and distilled water as dielectrics on the electric discharge machining characteristics of Ti–6A1–4V. J. Mater. Process. Technol. 87(1–3), 107–111 (1999)CrossRefGoogle Scholar
  2. 2.
    Lin, Y.C.; Yan, B.W.; Chang, Y.S.: Machining characteristics of titanium alloy (Ti–6Al–4V) using a combination process of EDM with USM. J. Mater. Process. Technol. 104(3), 171–177 (2000)CrossRefGoogle Scholar
  3. 3.
    Hasçalık, A.; Çaydaş, U.: Electrical discharge machining of titanium alloy (Ti–6Al–4V). Appl. Surf. Sci. 253(22), 9007–9016 (2007)CrossRefGoogle Scholar
  4. 4.
    Fonda, P.; Wang, Z.; Yamazaki, K.; Akutsu, Y.: A fundamental study on Ti–6Al–4V’s thermal and electrical properties and their relation to EDM productivity. J. Mater. Process. Technol. 202(1–3), 583–589 (2008)CrossRefGoogle Scholar
  5. 5.
    Kao, J.Y.; Tsao, C.C.; Wang, S.S.; Hsu, C.Y.: Optimization of the EDM parameters on machining Ti–6Al–4V with multiple quality characteristics. Int. J. Adv. Manuf. Technol. 47(1–4), 395–402 (2010)CrossRefGoogle Scholar
  6. 6.
    Jabbaripour, B.; Sadeghi, M.H.; Faridvand, S.; Shabgard, M.R.: Investigating the effects of EDM parameters on surface integrity, MRR and TWR in machining of Ti–6Al–4V. Mach. Sci. Technol. 16(3), 419–444 (2012)CrossRefGoogle Scholar
  7. 7.
    Alias, A.; Abdullah, B.; Abbas, N.M.: Influence of machine feed rate in WEDM of Titanium Ti–6Al–4V with constant current (6A) using brass wire. Proc. Eng. 41, 1806–1811 (2012)CrossRefGoogle Scholar
  8. 8.
    Sivaprakasam, P.; Hariharan, P.; Gowri, S.: Modeling and analysis of micro-WEDM process of titanium alloy (Ti–6Al–4V) using response surface approach. Eng. Sci. Technol. Int. J. 17(4), 227–235 (2014)CrossRefGoogle Scholar
  9. 9.
    Garg, M.P.; Jain, A.; Bhushan, G.: Multi-objective optimization of process parameters in wire electric discharge machining of Ti–6–2–4–2 alloy. Arab. J. Sci. Eng. 39(2), 1465–1476 (2014)CrossRefGoogle Scholar
  10. 10.
    Plaza, S.; Sanchez, J.A.; Perez, E.; Gil, R.; Izquierdo, B.; Ortega, N.; Pombo, I.: Experimental study on micro EDM-drilling of Ti–6Al–4V using helical electrode. Precis. Eng. 38(4), 821–827 (2014)CrossRefGoogle Scholar
  11. 11.
    Shen, Y.; Liu, Y.; Zhang, Y.; Tan, B.; Ji, R.; Cai, B.; Zheng, C.: Determining the energy distribution during electric discharge machining of Ti–6Al–4V. Int. J. Adv. Manuf. Technol. 70(1–4), 11–17 (2014)Google Scholar
  12. 12.
    Tang, L.; Du, Y.T.: Experimental study on green electrical discharge machining in tap water of Ti–6Al–4V and parameters optimization. Int. J. Adv. Manuf. Technol. 70(1–4), 469–475 (2014)CrossRefGoogle Scholar
  13. 13.
    Wang, X.; Liu, Z.; Xue, R.; Tian, Z.; Huang, Y.: Research on the influence of dielectric characteristics on the EDM of titanium alloy. Int. J. Adv. Manuf. Technol. 72(5–8), 979–987 (2014)CrossRefGoogle Scholar
  14. 14.
    Amorim, F.L.; Stedile, L.J.; Torres, R.D.; Soares, P.C.; Laurindo, C.A.H.: Performance and surface integrity of Ti–6Al–4V, after sinking EDM with special graphite electrodes. J. Mater. Eng. Perform. 23(4), 1480–1488 (2014)CrossRefGoogle Scholar
  15. 15.
    Tiwary, A.P.; Pradhan, B.B.; Bhattacharyya, B.: Study on the influence of micro-EDM process parameters during machining of Ti–6Al–4V super alloy. Int. J. Adv. Manuf. Technol. 76(1–4), 151–160 (2015)CrossRefGoogle Scholar
  16. 16.
    Khan, M.A.R.; Rahman, M.M.; Kadirgama, K.: An experimental investigation on surface finish in die-sinking EDM of Ti–5Al–2.5Sn. Int. J. Adv. Manuf. Technol. 77(9–12), 1727–1740 (2015)CrossRefGoogle Scholar
  17. 17.
    Altug, M.; Erdem, M.; Ozay, C.: Experimental investigation of kerf of Ti–6Al–4V exposed to different heat treatment processes in WEDM and optimization of parameters using genetic algorithm. Int. J. Adv. Manuf. Technol. 78(9–12), 1573–1583 (2015)CrossRefGoogle Scholar
  18. 18.
    Moses, M.D.; Jahan, M.P.: Micro-EDM machinability of difficult-to-cut Ti–6Al–4V against soft brass. Int. J. Adv. Manuf. Technol. 81(5–8), 1345–1361 (2015)CrossRefGoogle Scholar
  19. 19.
    Kuriachen, B.; Mathew, J.: Spark radius modeling of resistance–capacitance pulse discharge in micro-electric discharge machining of Ti–6Al–4V: an experimental study. Int. J. Adv. Manuf. Technol. 85(9–12), 1983–1993 (2016)CrossRefGoogle Scholar
  20. 20.
    Yadav, U.S.; Yadava, V.: Experimental investigation on electrical discharge drilling of Ti–6Al–4V alloy. Mach. Sci. Technol. 19(4), 515–535 (2015)CrossRefGoogle Scholar
  21. 21.
    Kolli, M.; Kumar, A.: Effect of dielectric fluid with surfactant and graphite powder on electrical discharge machining of titanium alloy using Taguchi Method. Eng. Sci. Technol. Int. J. 18(4), 524–535 (2015)CrossRefGoogle Scholar
  22. 22.
    Hui, Z.; Liu, Z.; Cao, Z.; Qiu, M.: Effect of cryogenic cooling of tool electrode on machining titanium alloy (Ti–6Al–4V) during EDM. Mater. Manuf. Process. 31(4), 475–482 (2016)CrossRefGoogle Scholar
  23. 23.
    Raj, S.O.N.; Prabhu, S.: Modeling and analysis of titanium alloy in wire-cut EDM using Grey relation coupled with principle component analysis. Aust. J. Mech. Eng. 15(3), 198–209 (2017)CrossRefGoogle Scholar
  24. 24.
    Gong, Y.; Sun, Y.; Wen, X.; Wang, C.; Gao, Q.: Experimental study on surface integrity of Ti–6Al–4V machined by LS-WEDM. Int. J. Adv. Manuf. Technol. 88(1–4), 197–207 (2017)CrossRefGoogle Scholar
  25. 25.
    Rahman, S.S.; Ashraf, M.Z.I.; Bashar, M.S.; Kamruzzaman, M.; Amin, A.K.M.N.; Hossain, M.M.: Crystallinity, surface morphology, and chemical composition of the recast layer and rutile-\(\text{ TiO }_{2}\) formation on Ti–6Al–4V ELI by wire-EDM to enhance biocompatibility. Int. J. Adv. Manuf. Technol. 93(9–12), 3285–3296 (2017)CrossRefGoogle Scholar
  26. 26.
    Sun, Y.; Gong, Y.; Liu, Y.; Cai, M.; Ma, X.; Li, P.: Experimental investigation on effects of machining parameters on the performance of Ti–6Al–4V micro rotary parts fabricated by LS-WEDT. Arch. Civ. Mech. Eng. 18(2), 385–400 (2018)CrossRefGoogle Scholar
  27. 27.
    Tiwary, A.P.; Pradhan, B.B.; Bhattacharyya, B.: Investigation on the effect of dielectrics during micro-electro-discharge machining of Ti–6Al–4V. Int. J. Adv. Manuf. Technol. 95(1–4), 861–874 (2018)CrossRefGoogle Scholar
  28. 28.
    Mathai, V.J.; Dave, H.K.; Desai, K.P.: End wear compensation during planetary EDM of Ti–6Al–4V by adaptive neuro fuzzy inference system. Prod. Eng. 12(1), 1–10 (2018)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Institute of TechnologyRourkelaIndia
  2. 2.Engineering DivisionCSIR-NMLJamshedpurIndia

Personalised recommendations