Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1583–1600 | Cite as

Effect of the Converging Pipe on the Performance of a Lucid Spherical Rotor

  • Mabrouk MosbahiEmail author
  • Ahmed Ayadi
  • Ibrahim Mabrouki
  • Zied Driss
  • Tullio Tucciarelli
  • Mohamed Salah Abid
Research Article - Mechanical Engineering
  • 9 Downloads

Abstract

Lucid spherical rotor is a cross-flow rotor developed to be installed within a pipeline. The purpose of installing this type of rotor is to collect excess energy available in gravity-fed water pipelines. In order to enhance the efficiency of the rotor which is installed in a channel, this paper aims to study the performance of Lucid spherical rotor with converging pipe. Numerical investigations were carried out to analyze the effect of the converging pipe on the performance of the rotor. Numerical simulations have been carried out using the unsteady Reynolds-averaged Navier–Stokes equations in conjunction with the realizable \(k-{\varepsilon }\) turbulence model. The validation of the numerical method with anterior published studies has been carried out. The hydrodynamic characteristics of the flow around the rotor with and without converging pipe have been analyzed and discussed. Numerical results indicated that the converging pipe increases the performance of the Lucid spherical rotor.

Keywords

Hydropower Lucid spherical rotor Channel Converging pipe Performance Validation 

List of symbols

\({C}_{m}\)

Torque coefficient, dimensionless

\({C}_{p}\)

Power coefficient, dimensionless

\({C}_{1{\varepsilon }}\)

Constant of the \(k-{\varepsilon }\) turbulence model

c

Blade chord, m

d

Rotating zone diameter, m

D

Rotor diameter, m

\({D}_\mathrm{i}\)

Converging section diameter, m

\({D}_\mathrm{o}\)

Pipe section diameter, m

e

Blade overlap

\({F}_{i}\)

Force components, N

\({G}_\mathrm{k}\)

Production term of turbulence, \(\hbox {kg\;m}^{-1}\;\hbox {s}^{-3}\)

h

Fixed domain height, m

H

Rotor height, m

k

Turbulent kinetic energy, \(\hbox {m}^{2}\;\hbox {s}^{-2}\)

l

Fixed domain length, m

\({L}_\mathrm{i}\)

Converging section length, m

\({L}_\mathrm{o}\)

Pipe section length, m

M

Rotor torque, N

p

Pressure, Pa

P

Rotor power, W

S

Rotor swept area, \(\hbox {m}^{2}\)

t

Time, s

\({u}_{i}\)

Velocity components, \(\hbox {m\;s}^{-1}\)

\({u}_{{i}}^{{\prime }}\)

Fluctuating velocity components, \(\hbox {m\;s}^{-1}\)

\({V}_{\infty }\)

Water velocity, \(\hbox {m\;s}^{-1}\)

w

Fixed domain width, m

\({x}_{i}\)

Cartesian coordinate, m

x

Cartesian coordinate, m

\({y}^{+}\)

Non-dimensional parameter

y

Cartesian coordinate, m

z

Cartesian coordinate, m

\({\varepsilon }\)

Dissipation rate of the turbulent kinetic energy, \(\hbox {W\;kg}^{-1}\)

\({\mu }\)

Dynamic viscosity, Pa s

\({\mu }_\mathrm{t}\)

Turbulent viscosity, Pa s

\({\rho }\)

Density, \(\hbox {kg\;m}^{-3}\)

\({\omega }\)

Rotor revolution speed, \(\hbox {rad\;s}^{-1}\)

\({\lambda }\)

Tip speed ratio

\({\sigma }_{k}\)

Constant of the \(k-{\varepsilon }\) turbulence model

\({\sigma }_{{\varepsilon } }\)

Constant of the \(k-{\varepsilon }\) turbulence model

\({{\delta } }_{{ij}} \)

Kronecker indices

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank the Laboratory of Electro-Mechanic Systems (LASEM) members for the financial assistance.

References

  1. 1.
    Jorgenson, A.K.; Alekseyko, A.; Giedraitis, V.: Energy consumption, human well-being and economic development in central and eastern European nations: a cautionary tale of sustainability. Energy Policy 66, 419–427 (2014)Google Scholar
  2. 2.
    Dias, R.A.; Mattos, C.R.; Balestieri, J.A.P.: The limits of human development and the use of energy and natural resources. Energy Policy 34, 1026–1031 (2006)Google Scholar
  3. 3.
    Apergis, N.; Payne, J.E.: Renewable energy, output, \(\text{ CO }_2\) emissions, and fossil fuel prices in Central America: evidence from a nonlinear panel smooth transition vector error correction model. Energy Econ. 42, 226–232 (2014)Google Scholar
  4. 4.
    Nandi, S.K.; Hoque, M.N.; Ghosh, H.R.; Chowdhury, R.: Assessment of wind and solar energy resources in Bangladesh. Arab. J. Sci. Eng. 38, 3113–3123 (2013)Google Scholar
  5. 5.
    Chang, J.; Leung, D.Y.C.; Wu, C.Z.; Yuan, Z.H.: A review on the energy production, consumption, and prospect of renewable energy in China. Renew. Sustain. Energy Rev. 7, 453–468 (2003)Google Scholar
  6. 6.
    Hall, D.O.; Mynick, H.E.; Williams, R.H.: Alternative roles for biomass in coping with greenhouse warming. Sci. Glob. Secur. 2, 113–151 (1991)Google Scholar
  7. 7.
    Paish, O.: Small hydropower: technology and current status. Renew. Sustain. Energy Rev. 6, 537–556 (2002)Google Scholar
  8. 8.
    Mabrouki, I.; Driss, Z.; Abid, M.S.: Experimental investigation of the height effect of water Savonius rotors. Int. J. Mech. Appl. 4, 8–12 (2014)Google Scholar
  9. 9.
    Birjandi, A.H.; Bibeau, E.L.; Chatoorgoon, V.; Kumar, A.: Power measurement of hydrokinetic turbines with free-surface and blockage effect. Ocean Eng. 69, 9–17 (2013)Google Scholar
  10. 10.
    Khan, M.J.; Bhuyan, G.; Iqbal, M.T.; Quaicoe, J.E.: Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: a technology status review. Appl. Energy 86, 1823–1835 (2009)Google Scholar
  11. 11.
    Frikha, S.; Driss, Z.; Ayadi, E.; Masmoudi, Z.; Abid, M.S.: Numerical and experimental characterization of multi-stage Savonius rotors. Energy 114, 382–404 (2016)Google Scholar
  12. 12.
    Kaprawi, S.; Santoso, D.; Sipahutar, R.: Performance of combined water turbine Darrieus–Savonius with two stage Savonius bucket and single deflector. Int. J. Renew. Energy Res. 5, 217–221 (2015)Google Scholar
  13. 13.
    Golecha, K.; Eldho, T.I.; Prabhu, S.V.: Influence of the deflector plate on the performance of modified Savonius hydrokinetic turbine. Appl. Energy 88, 3207–3217 (2011)Google Scholar
  14. 14.
    Bianchini, A.; Balduzzi, F.; Bachant, P.; Ferrara, G.; Ferrari, L.: Effectiveness of two-dimensional CFD simulations for Darrieus VAWTs: a combined numerical and experimental assessment. Energy Convers. Manag. 136, 318–328 (2017)Google Scholar
  15. 15.
    Bouzaher, M.T.; Hadid, M.: Numerical investigation of a vertical axis tidal turbine with deforming blades. Arab. J. Sci. Eng. 42, 2167–2178 (2017)Google Scholar
  16. 16.
    Yang, B.; Lawn, C.: Fluid dynamic performance of a vertical axis turbine for tidal currents. Renew. Energy 36, 3355–3366 (2011)Google Scholar
  17. 17.
    Bachant, P.; Wosnik, M.: Performance measurements of cylindrical- and spherical–helical cross-flow marine hydrokinetic turbines, with estimates of exergy efficiency. Renew. Energy 74, 318–325 (2015)Google Scholar
  18. 18.
    Derakhshan, S.; Ashoori, M.; Salemi, A.: Experimental and numerical study of a vertical axis tidal turbine performance. Ocean Eng. 137, 59–67 (2017)Google Scholar
  19. 19.
    Li, Y.; Calisal, S.M.: Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine. Renew. Energy 35, 2325–2334 (2010)Google Scholar
  20. 20.
    Velasco, D.; Mejia, O.L.; Laín, S.: Numerical simulations of active flow control with synthetic jets in a Darrieus turbine. Renew. Energy 113, 129–140 (2017)Google Scholar
  21. 21.
    Elbatran, A.H.; Ahmed, Y.M.; Shehata, A.S.: Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine. Energy 134, 566–584 (2017)Google Scholar
  22. 22.
    Shimokawa, K.; Furukawa, A.; Okuma, K.; Matsushita, D.; Watanabe, S.: Experimental study on simplification of Darrieus-type hydro turbine with inlet nozzle for extra-low head hydropower utilization. Renew. Energy 41, 376–382 (2012)Google Scholar
  23. 23.
    Kaprawi, S.; Dyos, S.; Agus, R.: Performance of combined water turbine with semielliptic section of the Savonius rotor. Int. J. Rotat. Mach. 2013, 1–5 (2013)Google Scholar
  24. 24.
    Sarma, N.K.; Biswas, A.; Misra, R.D.: Experimental and computational evaluation of Savonius hydrokinetic turbine for low velocity condition with comparison to Savonius wind turbine at the same input power. Energy Convers. Manag. 83, 88–98 (2014)Google Scholar
  25. 25.
    Akbarian, E.; Najafi, B.; Jafari, M.; Ardabili, S.F.; Shamshirband, S.; Chau, K.W.: Experimental and CFD-based numerical simulation of using natural gas in a dual-fuelled diesel engine. Eng. Appl. Comput. Fluid Mech. 12(1), 517–534 (2018)Google Scholar
  26. 26.
    Wu, C.L.; Chau, K.W.: Mathematical model of water quality rehabilitation with rainwater utilization: a case study at Haigang. Int. J. Environ. Pollut. 28(3–4), 534–545 (2006)Google Scholar
  27. 27.
    Ardabili, S.F.; Najafi, B.; Shamshirband, S.; Bidgoli, B.M.; Deo, R.C.; Chau, K.W.: Computational intelligence approach for modeling hydrogen production: a review. Eng. Appl. Comput. Fluid Mech. 12(1), 438–458 (2018)Google Scholar
  28. 28.
    Chau, K.W.; Jiang, Y.W.: A three-dimensional pollutant transport model in orthogonal curvilinear and sigma coordinate system for Pearl river estuary. Int. J. Environ. Pollut. 21(2), 188–198 (2004)Google Scholar
  29. 29.
    Mou, B.; He, B.J.; Zhao, D.X.; Chau, K.W.: Numerical simulation of the effects of building dimensional variation on wind pressure distribution. Eng. Appl. Comput. Fluid Mech. 11(1), 293–309 (2017)Google Scholar
  30. 30.
    Chau, K.W.; Jiang, Y.W.: Three-dimensional pollutant transport model for the Pearl River estuary. Water Res. 36(8), 2029–2039 (2002)Google Scholar
  31. 31.
    Kumar, A.; Saini, R.P.: Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades. Renew. Energy 113, 461–478 (2017)Google Scholar
  32. 32.
    Zhou, T.; Rempfer, D.: Numerical study of detailed flow field and performance of Savonius wind turbines. Renew. Energy 51, 373–381 (2013)Google Scholar
  33. 33.
    Driss, Z.; Bouzgarrou, G.; Chtourou, W.; Kchaou, H.; Abid, M.S.: Computational studies of the pitched blade turbines design effect on the stirred tank flow characteristics. Eur. J. Mech. B/Fluids 29, 236–245 (2010)zbMATHGoogle Scholar
  34. 34.
    Driss, Z.; Mlayeh, O.; Driss, D.; Maaloul, M.; Abid, M.S.: Numerical simulation and experimental validation of the turbulent flow around a small incurved Savonius wind rotor. Energy 74, 506–517 (2014)Google Scholar
  35. 35.
    Driss, Z.; Mlayeh, O.; Driss, S.; Driss, D.; Maaloul, M.; Abid, M.S.: Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors. Energy 89, 708–729 (2015)Google Scholar
  36. 36.
    Driss, Z.; Mlayeh, O.; Driss, S.; Driss, D.; Maaloul, M.; Abid, M.S.: Study of the incidence angle effect on the aerodynamic structure characteristics of an incurved Savonius wind rotor placed in a wind tunnel. Energy 113, 894–908 (2016)Google Scholar
  37. 37.
    Ammar, M.; Chtourou, W.; Driss, Z.; Abid, M.S.: Numerical investigation of turbulent flow generated in baffled stirred vessels equipped with three different turbines in one and two-stage system. Energy 36, 5081–5093 (2011)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Laboratory of Electro-Mechanic Systems (LASEM), National School of Engineers of Sfax (ENIS)University of SfaxSfaxTunisia
  2. 2.Higher National Engineering School of Tunis (ENSIT)University of TunisTunisTunisia
  3. 3.Department of Civil, Environmental, Aerospace and Materials Engineering (DICAM)University of PalermoPalermoItaly

Personalised recommendations