Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 479–487 | Cite as

Beachrock Cementation Patterns Along the Gulf of Aqaba Coast, Saudi Arabia

  • Rabea A. Haredy
  • Ibrahim M. GhandourEmail author
  • Ahmet Evren Erginal
  • Mustafa Bozcu
Research Article - Earth Sciences
  • 41 Downloads

Abstract

Beachrocks crop out along the Saudi coast of the Gulf of Aqaba with beds lying at elevations up to 0.8 m above the present sea level and with seaward extents that repeatedly submerge and emerge during high and low water levels. This study discusses the cement composition, petrography and bedding features of beachrocks at 24 different locations, of which a total of eight sites were sampled. The study focuses on the petrographic and microtextural characteristics of the beachrocks to elucidate their cementation environment and diagenetic evolution. The results revealed the predominance of three main cement types: (1) fibrous aragonite cement with morphologies including isopachous rims around grains with or without micritic substrates, pore-filling radial aggregates, pseudospherulite and randomly oriented interlocking aragonite fibers; (2) microcrystalline low-Mg calcite (LMC) cement binding grains and filling inter- and intra-granular pore spaces; and (3) micritic cement in the form of envelopes and/or pore-filling micrite in some samples with meniscus bridges. The last two types also contain infiltrated silt-sized clasts and skeletal remains. The cements indicate precipitation mainly in pore-filled marine phreatic diagenetic zone and, rarely, in the marine vadose zone with the aid of microbial and algal activity. Petrographic investigations and energy-dispersive X-ray spectroscopy of selected samples showed the occurrences of aragonite and LMC.

Keywords

Beachrock cement Acicular aragonite Microcrystalline cement Marine phreatic Vadose zones Meniscus bridge Gulf of Aqaba 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant no. 388-150-1434. The authors thankfully acknowledge the DSR’s technical and financial support. We are grateful to the editor and the anonymous reviewers for their constructive comments and the editorial handling of this manuscript.

References

  1. 1.
    Vousdoukas, M.I.; Velegrakis, A.F.; Plomaritis, T.A.: Beachrock occurrence, characteristics, formation mechanism and impacts. Earth Sci. Rev. 85(1), 23–46 (2007).  https://doi.org/10.1016/j.earscirev.2007.07.002 CrossRefGoogle Scholar
  2. 2.
    Vieira, M.M.; De Ros, L.F.: Cementation patterns and 241 genetic implications of Holocene beachrocks from northeastern Brazil. Sediment. Geol. 192(3–4), 207–230 (2006).  https://doi.org/10.1016/j.sedgeo.2006.04.011 CrossRefGoogle Scholar
  3. 3.
    Arrieta, N.; Goienaga, N.; Martínez-Arkarazo, I.; Murelaga, X.; Baceta, J.I.; Sarmiento, A.; Madariaga, J.M.: Beachrock formation in temperate coastlines: examples in sand-gravel beaches adjacent to the Nerbioi-Ibaizabal Estuary (Bilbao, Bay of Biscay, North of Spain). Spectrochim. Acta A 80(1), 55–65 (2011)CrossRefGoogle Scholar
  4. 4.
    Erginal, A.E.; Ekinci, Y.L.; Demirci, A.; Bozcu, M.; Ozturk, M.Z.; Avcioglu, M.; Oztura, E.: First record of beachrock on Black Sea coast of Turkey: implications for Late Holocene sea-level fluctuations. Sediment. Geol. 294, 294–302 (2013).  https://doi.org/10.1016/j.sedgeo.2013.06.003 CrossRefGoogle Scholar
  5. 5.
    Mauz, B.; Vacchi, M.; Green, A.N.; Hoffmann, G.; Cooper, A.: Beachrock: a tool for reconstructing relative sea level in the far field. Mar. Geol. 362, 1–16 (2015).  https://doi.org/10.1016/j.margeo.2015.01.009 CrossRefGoogle Scholar
  6. 6.
    Ozturk, M.Z.; Erginal, A.E.; Kiyak, N.G.; Ozturk, T.: Cement fabrics and optical luminescence ages of beachrock, North Cyprus: implications for Holocenesea-level changes. Quat. Int. 401, 132–140 (2015).  https://doi.org/10.1016/j.quaint.2015.03.024 CrossRefGoogle Scholar
  7. 7.
    Ghandour, I.M.; Al-Washmi, H.A.; Bantan, R.A.; Gadallah, M.M.: Petrographical and petrophysical characteristics of asynchronous beachrocksalong Al-Shoaiba Coast, Red Sea. Saudi Arabia. Arab. J. Geosci. 7(1), 355–365 (2014).  https://doi.org/10.1007/s12517-012-0826-9 CrossRefGoogle Scholar
  8. 8.
    Holail, H.M.; Shaaban, M.N.; Mansour, A.S.: Cementation of Holocene beachrock in the Aqaba and the Arabian Gulfs: comparative study. Carbonates Evaporites 19(2), 142–150 (2004).  https://doi.org/10.1007/BF03178477 CrossRefGoogle Scholar
  9. 9.
    Al-Ramadan, K.: Diagenesis of Holocene beachrocks: a comparative study between the Arabian Gulf and the Gulf of Aqaba, Saudi Arabia. Arab. J. Geosci. 7(11), 4933–4942 (2014).  https://doi.org/10.1007/s12517-013-1127-7 CrossRefGoogle Scholar
  10. 10.
    Koeshidayatullah, A.; Al-Ramadan, K.: Unraveling cementation environment and patterns of Holocene beachrocks in the Arabian Gulf and the Gulf of Aqaba:stable isotope approach. Geol. Q. 58(2), 207–216 (2014).  https://doi.org/10.7306/gq.1144https://gq.pgi.gov.pl/article/view/9298 Google Scholar
  11. 11.
    Friedman, G.M.; Gavish, E.: Mediterranean and Red Sea (Gulf of Aqaba) beachrocks. In: Bricker, O.P. (ed.) Carbonate Cements, pp. 13–16. John Hopkins University Press, Baltimore (1971)Google Scholar
  12. 12.
    Krumbein, W.E.: Photolithotropic and chemoorganotrophic activity ofbacteria and algae as related to beachrock formation and degradation (Gulf of Aqaba, Sinai). J. Geomicrobiol. 1(2), 139–203 (1979).  https://doi.org/10.1080/01490457909377729 CrossRefGoogle Scholar
  13. 13.
    Holail, H.; Rashed, M.: Stable isotopic composition of carbonate cemented recent beachrock along the Mediterranean and the Red Sea coasts of Egypt. Mar. Geol. 106(1–2), 141–148 (1992).  https://doi.org/10.1016/0025-3227(92)90059-Q CrossRefGoogle Scholar
  14. 14.
    Strasser, A.; Strohmenger, C.: Early diagenesis 283 in Pleistocene coral reefs, southern Sinai, Egypt: response to tectonics, sea-level and climate. Sedimentology 44, 537–558 (1997)CrossRefGoogle Scholar
  15. 15.
    Garfunkel, Z.: Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics. Tectonophysics 80, 81–108 (1981)CrossRefGoogle Scholar
  16. 16.
    Lyberis, N.: Tectonic evolution of the Gulf of Suez and the Gulf of Aqaba. Tectonophysics 153, 209–220 (1988)CrossRefGoogle Scholar
  17. 17.
    Kohn, B.P.; Eyal, M.: History of uplift of the crystalline basement of Sinai and its relation to opening of the Red Sea as revealed by fission track dating of apatites. Earth Planet. Sci. Lett. 52, 129–141 (1981)CrossRefGoogle Scholar
  18. 18.
    Johnson, P.R.: Explanatory Notes to the Map of Proterozoic Geology of Western Saudi Arabia. Saudi Geological Survey Technical Report SGS-TR-2006-4 (2006)Google Scholar
  19. 19.
    Shaked, Y.; Marco, S.; Lazar, B.; Stein, M.; Cohen, C.; Sass, E.; Agnon, A.: Late Holocene shorelines at the Gulf of Aqaba: migrating shorelines under conditions of tectonic and sea level stability. Eur. Geosci. Union Stephan Mueller Spec. Publ. Ser. 2, 1–7 (2002)Google Scholar
  20. 20.
    Assaf, G.; Kessler, J.: Climate and energy exchange in Gulf of Aqaba (Eilat). Mon. Weather Rev. 104(4), 381–385 (1976)CrossRefGoogle Scholar
  21. 21.
    Reiss, Z.; Hottinger, L.: The Gulf of Aqaba: Ecological Micropaleontology. Ecological Studies, vol. 50. Springer, Berlin (1984)Google Scholar
  22. 22.
    Erginal, A.E.; Kıyak, N.G.; Öztürk, M.Z.; Avcığlu, M.; Bozcu, M.; Yiğitbaş, E.: Cementation characteristics and age of beachrocks in a fresh-water environment, Lake İznik, NW Turkey. Sediment. Geol. 243, 148–154 (2012).  https://doi.org/10.1016/j.sedgeo.2011.10.012 CrossRefGoogle Scholar
  23. 23.
    Beier, J.A.: Diagenesis of Quaternary Bahamian beachrock: petrographic and isotopic evidence. J. Sediment. Petrol. 55(5), 755–761 (1985).  https://doi.org/10.1306/212F87DD-2B24-11D7-8648000102C1865D Google Scholar
  24. 24.
    El-Sayed, M.K.: Beachrock cementation in Alexandria, Egypt. Mar. Geol. 80(1–2), 29–35 (1988).  https://doi.org/10.1016/0025-3227(88)90070-9 CrossRefGoogle Scholar
  25. 25.
    Khalaf, F.I.: Quaternary calcareous hard rocks and the associated sediments in the intertidal and offshore zones of Kuwait. Mar. Geol. 80(1–2), 1–27 (1988).  https://doi.org/10.1016/0025-3227(88)90069-2 CrossRefGoogle Scholar
  26. 26.
    Strasser, A.; Davaud, E.; Jedoui, Y.: Carbonate cements in Holocene beachrock: example from Bahiret et Biban, southeastern Tunisia. Sediment. Geol. 62(1), 89–100 (1989)CrossRefGoogle Scholar
  27. 27.
    Whittel, G.L.; Alsharhan, A.S.; Kendall, C.G.S.C.: Petrography of Holocene beachrock and hardgrounds, Abu Dhabi, United Arab Emirates. In: Alsharhan, A.S., Glennie, K.W., Whittle, G.L., Kendall, C.G.S.C. (eds.) Quaternary Deserts and Climatic Change, pp. 57–68. Balkema Rotterdam, Netherland (1998)Google Scholar
  28. 28.
    Gischler, E.: Beachrock and intertidal precipitates. In: David, N.J., McLaren, S.J. (eds.) Geochemical Sediments and Landscapes, pp. 365–390. Blackwell Publishing Ltd, Oxford (2007)CrossRefGoogle Scholar
  29. 29.
    Desruelle, S.; Fouache, E.; Ciner, A.; Dalongeville, R.; Pavlopoulos, K.; Kosun, E.; Coquinot, Y.; Potdevin, J.: Beachrocks and sea level changes since Middle Holocene: Comparison between the insular group of Mykonos-Delos-Rhenia (Cyclades, Greece) and the southern coast of Turkey. Global Planet. Change 66(1–2), 19–33 (2009).  https://doi.org/10.1016/j.gloplacha.2008.07.009 CrossRefGoogle Scholar
  30. 30.
    Vacchi, M.; Marriner, N.; Morhange, C.; Spada, G.; Fontana, A.; Rovere, A.: Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: sea-level variability and improvements in the definition of the isostatic signal. Earth Sci. Rev. 155, 172–197 (2016).  https://doi.org/10.1016/j.earscirev.2016.02.002 CrossRefGoogle Scholar
  31. 31.
    Kendall, C.G.S.C.; Sadd, J.; Alsharhan, A.S.: Holocene marine cement coatings on beachrocks of the Abu Dhabi coastline (UAE); analogs for cement fabrics in ancient limestones. Carbonate Evaporites 9, 119–131 (1994).  https://doi.org/10.1007/BF03175225 CrossRefGoogle Scholar
  32. 32.
    Longman, M.W.: Carbonate diagenetic textures from near surface diagenetic environments. Am. Assoc. Petrol. Geol. Bull. 64(4), 461–487 (1980)Google Scholar
  33. 33.
    Tucker, M.E.; Wright, V.P.: Carbonate Sedimentology. Blackwell Scientific, Oxford (1990)CrossRefGoogle Scholar
  34. 34.
    Molenaar, N.; Züjlstra, J.J.P.: Differential early diagenetic low-Mg calcite cementation and rhythmic hardground development in Campanian-Maastrichtian chalk. Sediment. Geol. 109(3–4), 261–281 (1997).  https://doi.org/10.1016/S0037-0738(96)00064-4 CrossRefGoogle Scholar
  35. 35.
    Neumeier, U.: Experimental modelling of beachrock cementation under microbial influence. Sediment. Geol. 126, 35–46 (1999)CrossRefGoogle Scholar
  36. 36.
    Shen, J.; Wang, Y.; Zhao, N.; Yang, H.; Fu, F.; Jin, Y.: Carbonate sedimentary characteristics of the beach rocks around Qilian Islets and Cays, Xisha Islands: implication for coral reef development and decline. Palaeogeogr. Palaeoclimatol. Palaeoecol. 474, 264–278 (2017)CrossRefGoogle Scholar
  37. 37.
    McCutcheon, J.; Nothdurft, L.D.; Webb, G.E.; Shuster, J.; Nothdurft, L.: Building biogenic beachrock: Visualizing microbially-mediated carbonate cement precipitation using XFM and a strontium tracer. Chem. Geol. 465, 21–34 (2017)CrossRefGoogle Scholar
  38. 38.
    Webb, G.E.; Jell, J.S.; Baker, J.C.: Cryptic intertidal microbialites in beachrock, Heron Island, Great Barrier Reef: implications for the origin of microcrystalline beachrock cement. Sediment. Geol. 126(1), 317–334 (1999).  https://doi.org/10.1016/S0037-0738(99)00047-0 CrossRefGoogle Scholar
  39. 39.
    Krishna, K.; Chandrasekar, S.; Seralathan, N.; Dajkumar, P.; Sahayam, J.: Diagenesis of Holocene reef and associated beachrock of certain coral islands, Gulf of Mannar, India: implication on climate and sea level. J. Earth Syst. Sci. 121(3), 733–745 (2012).  https://doi.org/10.1007/s12040-012-0183-9 CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Marine Geology Department, Faculty of Marine SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of Geology, Faculty of ScienceTanta UniversityTantaEgypt
  3. 3.Department of Geography Education, Faculty of EducationÇanakkale Onsekiz Mart UniversityÇanakkaleTurkey
  4. 4.Department of Geology EngineeringÇanakkale Onsekiz Mart UniversityÇanakkaleTurkey

Personalised recommendations