Arabian Journal for Science and Engineering

, Volume 44, Issue 8, pp 6769–6781 | Cite as

Integrating SCESS into a Ship-PV Power System to Mitigate Power Fluctuations and Improve LVRT Capability

  • Yuanchao Qiu
  • Chengqing YuanEmail author
  • Jinrui Tang
Research Article - Electrical Engineering


Because of the intermittence of PV power generation and the peculiarities of the ship power system, the integration of a PV system into a ship grid must adopt an ESS or available control strategy to smooth the fluctuating grid-connected power and enhance the LVRT capability of the PV power system. This paper proposes a novel model to smooth the grid-connected power and improve the LVRT capability by using an SCESS. In addition, a comprehensive control strategy is designed to achieve the power scheduling between the PV and SCESS and to overcome the problems of DC-link overvoltage and AC overcurrent that may cause disconnection or damage to the inverter. The dynamic behaviours of the system are investigated by considering various scenarios, such as varying irradiance and different levels of voltage drop. The results confirm the effectiveness of the proposed model in limiting the DC bus voltage, smoothing the grid-connected power and enhancing the LVRT capability by PSCAD/EMTDC simulation of a 143-kW ship-PV power system.


Hybrid ship/PV/SC power system Supercapacitor energy storage system LVRT Smoothing grid-connected power 

List of symbols



Battery energy storage systems


Diesel generator


Energy storage system


Low voltage ride through


Maximum power point tracking


Perturbation and observation


Point of common connection






Supercapacitor energy storage systems


State of charge



DC bus capacitor


Duty cycle of the bidirectional buck/boost converter


Band-gap energy of the solar cell material


Switching frequency of the bidirectional buck/boost converter

\(G, T_{c}\)

Actual solar irradiance and temperature

\(G_{\mathrm{R}}\), \(T_{\mathrm{cR}}\)

Reference solar irradiance and cell temperature

\(i_{{d}}\),\( i_{{q}}\)

Active and reactive current at PCC


Current that passing through the \(L_{\mathrm{sc}}\)


Dark current at the reference temperature


Short-circuit current at \(G_{\mathrm{R}}\) and \(T_{\mathrm{cR}}\)


Boltzmann constant


Energy-storage inductance


Energy-storage inductance


Diode ideality factor


PV inverter output power


Loss power of the SC


Output power of PV


Instantaneous active power expression of the SC

\(P_{\mathrm{T}}\),\( Q_{\mathrm{T}}\)

Active and reactive powers at PCC


Electron charge


Equivalent inner resistance of the SC


Equivalent parallel resistance of the SC


Charge or discharge duration of the SCESS

\(u_{{d}}\), \(u_{q}\)

Active and reactive voltage at PCC


Rated DC bus voltage


Maximum power point voltage

\(V_{\mathrm{PV}, }I_{\mathrm{PV}}\)

Photovoltaic source output voltage and current

\(V_{\mathrm{sc}\_\mathrm{rated}}\), \(V_{\mathrm{min}}\)

Rated voltage and discharge cut-off voltage of the SC

\(\Delta I_{\mathrm{scp}}\)

Maximum allowable ripple current

Greek symbols

\(\alpha \)

Temperature coefficient of the PV current

\(\theta \)

Instantaneous angle of the PCC voltage

\(\lambda \)

Power variation rate allowed by ship classification society


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (No. 51422507).


  1. 1.
    Hebner, R.E.; Uriarte, F.M.; Kwasinski, A.; Gattozzi, A.L.; Estes, H.B.; Anwar, A.; Cairoli, P.; Dougal, R.A.; Feng, X.; Chou, H.M.; Thomas, L.J.; Pipattanasomporn, M.; Rahman, S.; Katiraei, F.; Steurer, M.; Faruque, M.O.; Rios, M.A.; Ramos, G.A.; Mousavi, M.J.; McCoy, T.J.: Technical cross-fertilization between terrestrial microgrids and ship power systems. J. Mod. Power Syst. Clean Energy 4, 161–179 (2016). CrossRefGoogle Scholar
  2. 2.
    Bergmeijer, P.: The international convention for the prevention of pollution from ships A2. In: Presented at the Dolman. Antony J (1992)Google Scholar
  3. 3.
    Nojavan, S.; Majidi, M.; Zare, K.: Performance improvement of a battery/PV/fuel cell/grid hybrid energy system considering load uncertainty modeling using IGDT. Energy Convers. Manag. 147, 29–39 (2017). CrossRefGoogle Scholar
  4. 4.
    Geertsma, R.D.; Negenborn, R.R.; Visser, K.; Hopman, J.J.: Design and control of hybrid power and propulsion systems for smart ships: a review of developments. Appl. Energy 194, 30–54 (2017). CrossRefGoogle Scholar
  5. 5.
    Marei, M.I.; Elsayad, N.; El-Sattar, A.A.: PV interface system with LVRT capability based on a current controlled HFAC link converter. Sustain. Energy Technol. Assess. 9, 55–62 (2015). Google Scholar
  6. 6.
    Babu, C.; Ponnambalam, P.: The role of thermoelectric generators in the hybrid PV/T systems: a review. Energy Convers. Manag. 151, 368–385 (2017). CrossRefGoogle Scholar
  7. 7.
    Tawada, Y.; Furukawa, M.; Shibata, N.; Sumiya, T.; Tanaka, T.; Kinoshita, M.; Industrial, T.M.; Corporation, S.: Behavior of a photovoltaic inverter under sudden increase in irradiance due to reflection in clouds. 22–25 (2015)Google Scholar
  8. 8.
    Viola, F.; Romano, P.; Miceli, R.; Spataro, C.; Schettino, G.; Caruso, M.; Busacca, A.; Parisi, A.; Guarino, S.; Cino, A.: Comparison on the use of PV systems in the vertical walls. In: 2015 international conference on renewable energy resources and applications, ICRERA 2015, pp. 1651–1653 (2016).
  9. 9.
    Reihani, E.; Ghorbani, R.: Load commitment of distribution grid with high penetration of photovoltaics (PV) using hybrid series–parallel prediction algorithm and storage. Electr. Power Syst. Res. 131, 224–230 (2016). CrossRefGoogle Scholar
  10. 10.
    Diab, F.; Lan, H.; Ali, S.: Novel comparison study between the hybrid renewable energy systems on land and on ship. Renew. Sustain. Energy Rev. 63, 452–463 (2016). CrossRefGoogle Scholar
  11. 11.
    Kenan Döşoğlu, M.: Hybrid low voltage ride through enhancement for transient stability capability in wind farms. Int. J. Electr. Power Energy Syst. 78, 655–662 (2016). CrossRefGoogle Scholar
  12. 12.
    Jaalam, N.; Rahim, N.A.; Bakar, A.H.A.; Eid, B.M.: Strategy to enhance the low-voltage ride-through in photovoltaic system during multi-mode transition. Sol. Energy 153, 744–754 (2017). CrossRefGoogle Scholar
  13. 13.
    Al-Shetwi, A.Q.; Sujod, M.Z.; Blaabjerg, F.: Low voltage ride-through capability control for single-stage inverter-based grid-connected photovoltaic power plant. Sol. Energy 159, 665–681 (2018). CrossRefGoogle Scholar
  14. 14.
    Bae, Y.; Vu, T.K.; Kim, R.Y.: Implemental control strategy for grid stabilization of grid-connected PV system based on German grid code in symmetrical low-to-medium voltage network. IEEE Trans. Energy Convers. 28, 619–631 (2013). CrossRefGoogle Scholar
  15. 15.
    Wang, X.; Yu, D.; Le Blond, S.; Zhao, Z.; Wilson, P.: A novel controller of a battery-supercapacitor hybrid energy storage system for domestic applications. Energy Build. 141, 167–174 (2017). CrossRefGoogle Scholar
  16. 16.
    Lee, K.J.; Shin, D.S.; Lee, J.P.; Yoo, D.W.; Choi, H.K.; Kim, H.J.: Hybrid photovoltaic/diesel green ship operating in standalone and grid-connected mode in South Korea—Experimental investigation. In: 2012 IEEE vehicle power propulsion conference VPPC 2012, vol. 49, pp. 580–583 (2012).
  17. 17.
    Lan, H.; Wen, S.; Hong, Y.Y.; Yu, D.C.; Zhang, L.: Optimal sizing of hybrid PV/diesel/battery in ship power system. Appl. Energy 158, 26–34 (2015). CrossRefGoogle Scholar
  18. 18.
    Wen, S.; Lan, H.; Hong, Y.Y.; Yu, D.C.; Zhang, L.; Cheng, P.: Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system. Appl. Energy 175, 158–167 (2016). CrossRefGoogle Scholar
  19. 19.
    Lan, H.; Yu, D.C.; Fu, Q.; Hong, Y.-Y.; Yu, L.; Yang, R.: Optimal sizing of hybrid energy storage sub-systems in PV/Diesel ship power system using frequency analysis. Energy 140, 198–208 (2017). CrossRefGoogle Scholar
  20. 20.
    Misyris, G.S.; Marinopoulos, A.; Doukas, D.I.; Tengnér, T.; Labridis, D.P.: On battery state estimation algorithms for electric ship applications. Electr. Power Syst. Res. 151, 115–124 (2017). CrossRefGoogle Scholar
  21. 21.
    Liu, H.; Zhang, Q.; Qi, X.; Han, Y.; Lu, F.: Estimation of PV output power in moving and rocking hybrid energy marine ships. Appl. Energy 204, 362–372 (2017). CrossRefGoogle Scholar
  22. 22.
    Abbezzot, C.; Tran, T.; Poggi, P.; Serre-Combe, P.; Perrin, M.; Muselli, M.: Using a flywheel associated to PV power plant in order to increase the integration of PV into island electrical grid. Int. Conf. Renew. Energies Power Qual. 11, 568–578 (2013)CrossRefGoogle Scholar
  23. 23.
    Arani, A.A.K.; Karami, H.; Gharehpetian, G.B.; Hejazi, M.S.A.: Review of flywheel energy storage systems structures and applications in power systems and microgrids. Renew. Sustain. Energy Rev. 69, 9–18 (2017). CrossRefGoogle Scholar
  24. 24.
    Ramli, M.A.M.; Hiendro, A.; Twaha, S.: Economic analysis of PV/diesel hybrid system with flywheel energy storage. Renew. Energy 78, 398–405 (2015). CrossRefGoogle Scholar
  25. 25.
    China Classification Society: rules for classification of sea-going steel ships (2015)Google Scholar
  26. 26.
    Worku, M.Y.; Abido, M.A.: Grid-connected PV array with supercapacitor energy storage system for fault ride through. In: Proceedings of IEEE international conference on industrial technology 2015–June, pp. 2901–2906 (2015).
  27. 27.
    Worku, M.Y.; Abido, M.A.; Iravani, R.: Power fluctuation minimization in grid connected photovoltaic using supercapacitor energy storage system. J. Renew. Sustain. Energy 8, 013501 (2016). CrossRefGoogle Scholar
  28. 28.
    Yang, F.; Yang, L.; Ma, X.: An advanced control strategy of PV system for low-voltage ride-through capability enhancement. Sol. Energy 109, 24–35 (2014). CrossRefGoogle Scholar
  29. 29.
    Lin, F.J.; Lu, K.C.; Ke, T.H.: Probabilistic wavelet fuzzy neural network based reactive power control for grid-connected three-phase PV system during grid faults. Renew. Energy 92, 437–449 (2016). CrossRefGoogle Scholar
  30. 30.
    Saad, N.H.; El-Sattar, A.A.; Mansour, A.E.A.M.: Improved particle swarm optimization for photovoltaic system connected to the grid with low voltage ride through capability. Renew. Energy 85, 181–194 (2016). CrossRefGoogle Scholar
  31. 31.
    Islam, G.; Muyeen, S.M.; Al-Durra, A.; Hasanien, H.M.: RTDS implementation of an improved sliding mode based inverter controller for PV system. ISA Trans. 62, 50–59 (2016). CrossRefGoogle Scholar
  32. 32.
    Diaz Franco, F.; Vu, T.V.; Gonsulin, D.; Vahedi, H.; Edrington, C.S.: Enhanced performance of PV power control using model predictive control. Sol. Energy 158, 679–686 (2017). CrossRefGoogle Scholar
  33. 33.
    Tang, R.: Large-scale photovoltaic system on green ship and its MPPT controlling. Sol. Energy 157, 614–628 (2017). CrossRefGoogle Scholar
  34. 34.
    Gupta, A.; Chauhan, Y.K.; Pachauri, R.K.: A comparative investigation of maximum power point tracking methods for solar PV system. Sol. Energy 136, 236–253 (2016). CrossRefGoogle Scholar
  35. 35.
    Kolsi, S.; Samet, H.; Amar, M.: Ben: design analysis of DC–DC converters connected to a photovoltaic generator and controlled by MPPT for optimal energy transfer throughout a clear day. J. Power Energy Eng. 02, 27–34 (2014). CrossRefGoogle Scholar
  36. 36.
    Zangeneh Bighash, E.; Sadeghzadeh, S.M.; Ebrahimzadeh, E.; Blaabjerg, F.: Improving performance of LVRT capability in single-phase grid-tied PV inverters by a model-predictive controller. Int. J. Electr. Power Energy Syst. 98, 176–188 (2018). CrossRefGoogle Scholar
  37. 37.
    Pereira, H.A.; Freijedo, F.D.; Silva, M.M.; Mendes, V.F.; Teodorescu, R.: Harmonic current prediction by impedance modeling of grid-tied inverters: a 1.4 MW PV plant case study. Int. J. Electr. Power Energy Syst. 93, 30–38 (2017). CrossRefGoogle Scholar
  38. 38.
    Lekouaghet, B.; Boukabou, A.; Lourci, N.; Bedrine, K.: Control of PV grid connected systems using MPC technique and different inverter configuration models. Electr. Power Syst. Res. 154, 287–298 (2018). CrossRefGoogle Scholar
  39. 39.
    Kammoun, S.; Sallem, S.; Kammoun, M.B.A.: Backstepping control for low-voltage ride through enhancement of DFIG-based wind turbines. Arab. J. Sci. Eng. 42, 5083–5099 (2017). CrossRefGoogle Scholar
  40. 40.
    Trovão, J.P.; Silva, M.A.; Antunes, C.H.; Dubois, M.R.: Stability enhancement of the motor drive DC input voltage of an electric vehicle using on-board hybrid energy storage systems. Appl. Energy 205, 244–259 (2017). CrossRefGoogle Scholar
  41. 41.
    Teymourfar, R.; Asaei, B.; Iman-Eini, H.; Nejati Fard, R.: Stationary super-capacitor energy storage system to save regenerative braking energy in a metro line. Energy Convers. Manag. 56, 206–214 (2012). CrossRefGoogle Scholar
  42. 42.
    Lechene, B.P.; Clerc, R.; Arias, A.C.: Theoretical analysis and characterization of the energy conversion and storage efficiency of photo-supercapacitors. Sol. Energy Mater. Sol. Cells 172, 202–212 (2017). CrossRefGoogle Scholar
  43. 43.
    Wang, B.; Xu, J.; Xu, D.; Yan, Z.: Implementation of an estimator-based adaptive sliding mode control strategy for a boost converter based battery/supercapacitor hybrid energy storage system in electric vehicles. Energy Convers. Manag. 151, 562–572 (2017). CrossRefGoogle Scholar
  44. 44.
    Ruan, J.; Walker, P.D.; Zhang, N.; Wu, J.: An investigation of hybrid energy storage system in multi-speed electric vehicle. Energy 140, 291–306 (2017). CrossRefGoogle Scholar
  45. 45.
    Bahavarnia, M.; Tavazoei, M.S.: A new view to Ziegler–Nichols step response tuning method: analytic non-fragility justification. J. Process Control 23, 23–33 (2013). CrossRefGoogle Scholar
  46. 46.
    Yucelen, T.; Kaymakci, O.; Kurtulan, S.: Self-tuning PID controller using Ziegler–Nichols method for programmable logic controllers. IFAC (2006)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.School of Energy and Power EngineeringWuhan University of TechnologyWuhanChina

Personalised recommendations