Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1543–1552 | Cite as

Porosity Study of Developed Al–Mg–Si/Bauxite Residue Metal Matrix Composite Using Advanced Stir Casting Process

  • Ajay Singh VermaEmail author
  • Manjot Singh Cheema
  • Suman Kant
  • Narendra Mohan Suri
Research Article - Mechanical Engineering


Bauxite residue (BR) is the waste generated from alumina processing industries, which is considered as an environmental problem throughout world. Hence, utilization of BR is the need of the hour. In the present investigation, vacuum type bottom pouring mechanism is introduced in stir casting process to fabricate a low-cost particulate metal matrix composite (PMMC) using Al–Mg–Si alloy with BR as reinforcement. Controlled process parameters in terms of stirring speed and particle percentage were chosen in development of Al–Mg–Si/BR PMMC. The result of the microstructural study reveals uniform distribution of particles with 350 and 450 rpm of stirring speed. In this study, it was observed that increased BR weight fraction resulted in increased porosity content of the developed PMMC. Porosity content was found to have major impact on the microhardness of developed Al–Mg–Si/BR PMMC. The microhardness behavior of the developed PMMC was also predicted at different indentation loads. Microstructure was examined at both stirring speeds at different cross sections of the cylindrical samples. The reinforcement content was varied in a percentage range of 2–8% by weight. Beyond the limit of 8-wt% reinforcement concentration, defects like voids, local clustering, and agglomeration of particles were seen in the developed Al–Mg–Si/BR PMMC.


Bauxite residue Bottom pouring Homogeneity Microhardness Porosity Stir casting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Varol, T.; Canakci, A.; Yalcin, E.D.: Fabrication of nanoSiC-reinforced Al2024 matrix composites by a novel production method. Arab. J. Sci. Eng. 42, 1751–1764 (2017)CrossRefGoogle Scholar
  2. 2.
    Wong, C.W.; Gupta, M.; Lu, L.: Effect of matrix constitution on microstructure and mechanical properties of rheocast metal matrix composites. Mater. Manuf. Process 13, 27–52 (1998)CrossRefGoogle Scholar
  3. 3.
    Raei, M.; Panjepour, M.; Meratian, M.: Effect of stirring speed and time on microstructure and mechanical properties of Cast Al–Ti–Zr–B4C composite produced by stir casting. Russ. J. Non-Ferr. Met. 57, 347–360 (2016)CrossRefGoogle Scholar
  4. 4.
    Yigezu, B.S.; Jha, P.K.; Mahapatra, M.M.: The key attributes of synthesizing ceramic particulate reinforced Al-based matrix composites through stir casting process: a review. Mater. Manuf. Process. 28, 969–979 (2013)Google Scholar
  5. 5.
    Bandyopadhyay, N.R.; Ghosh, S.; Basumallick, A.: New generation metal matrix composites. Mater. Manuf. Process. 22, 679–682 (2007)CrossRefGoogle Scholar
  6. 6.
    Hashim, J.: Microstructure and porosity studies of cast Al-SiCp metal matrix composite. Jurnalteknologi 31, 1–12 (1999)Google Scholar
  7. 7.
    Ahmad, S.N.; Hashim, J.; Ghazali, M.I.: The effects of porosity on mechanical properties of cast discontinuous reinforced metal-matrix composite. J. Compos. Mater. 39, 451–466 (2005)CrossRefGoogle Scholar
  8. 8.
    Inegbenebor, A.O.; Bolu, C.A.; Babalola, P.O.; Inegbenebor, A.I.; Fayomi, O.S.I.: Aluminum silicon carbide particulate metal matrix composite development via stir casting processing. Silicon 10, 343–347 (2018)CrossRefGoogle Scholar
  9. 9.
    Bharath, V.; Ajawan, S.S.; Nagaral, M.; Auradi, V.; Kori, S.A.: Characterization and mechanical properties of 2014 aluminum alloy reinforced with \(\text{Al}_{2}\text{ O }_{3{\rm p}}\) composite produced by two-stage stir casting route. J. Inst. Eng. (India) Ser C 1–6 (2018)Google Scholar
  10. 10.
    Chung, I.G.; Bolouri, A.; Kang, C.G.: A study on semisolid processing of A356 aluminum alloy through vacuum-assisted electromagnetic stirring. Int. J. Adv. Manuf. Technol. 58, 237–245 (2012)CrossRefGoogle Scholar
  11. 11.
    Shen, M.J.; Yang, R.; Zhang, M.F.; Ying, T.; Nie, K.B.: Effects of SiCp parameters on microstructures, interface structure and mechanical property of Mg bulk composites produced by ultrasonic vibration processing. Trans. Indian Inst. Met. 71, 1343–1350 (2018)CrossRefGoogle Scholar
  12. 12.
    Dwivedi, S.P.; Sharma, S.; Mishra, R.K.: Microstructure and mechanical behavior of A356/SiC/Fly-ash hybrid composites produced by electromagnetic stir casting. J. Braz. Soc. Mech. Sci. Eng. 37, 57–67 (2015)CrossRefGoogle Scholar
  13. 13.
    Sardar, S.; Karmakar, S.K.; Das, D.: Evaluation of Abrasive Wear Resistance of \(\text{ Al }_{2}\text{ O }_{3}/7075\) Composite by Taguchi Experimental Design Technique. Trans. Indian Instit. Met., 1–12 (2015)Google Scholar
  14. 14.
    Poria, S.; Sahoo, P.; Sutradhar, G.: Tribological characterization of stir-cast aluminium-\(\text{ TiB }_{2}\) metal matrix composites. Silicon 8, 591–599 (2016)CrossRefGoogle Scholar
  15. 15.
    Soltani, S.; Khosroshahi, R.A.; Mousavian, R.T.; Jiang, Z.Y.; Boostani, A.F.; Brabazon, D.: Stir casting process for manufacture of Al–SiC composites. Rare Met. 36, 581–590 (2017)CrossRefGoogle Scholar
  16. 16.
    Verma, A.S.; Suman, Kant; Suri, N.M.: Corrosion behavior of aluminum base particulate metal matrix composites: a review. Mater. Today Proc. 2, 2840–2851 (2015)CrossRefGoogle Scholar
  17. 17.
    Abdizadeh, H.; Baghchesara, M.A.: Optimized Parameters for Enhanced Properties in Al–\(\text{ B }_{4}\text{ C }\) Composite. Arab. J. Sci. Eng., 1–11 (2017)Google Scholar
  18. 18.
    Arora, G.; Sharma, S.: A comparative study of AA6351 mono-composites reinforced with synthetic and agro waste reinforcement. Int. J. Precis. Eng. Manuf. 19, 631–638 (2018)CrossRefGoogle Scholar
  19. 19.
    Singh, J.; Suri, N.M.; Verma, A.: Affect of mechanical properties on groundnut shell ash reinforced Al6063. Int. J. Technol. Res. Eng. 2, 2619–2623 (2015)Google Scholar
  20. 20.
    Verma, A.S.; Suri, N.M.; Kant, S.: Effect of Process parameter of AL-6063 based fly ash composites using Taguchi. Int. J. Appl. Eng. Res. 7, 1856–1859 (2012)Google Scholar
  21. 21.
    Verma, A.S.; Suri, N.M.; Kant, S.: Applications of bauxite residue: a mini-review. Waste Manag. Res. 35, 999–1012 (2017)CrossRefGoogle Scholar
  22. 22.
    Lloyd, D.J.; Jin, I.: Melt processed aluminum matrix particle reinforced composites. In: Clyne, T.W., Kelly, A., Zweben, C. (eds.) Comprehensive Composite Materials, vol. 3. Metal Matrix Composites, Pergamon (2000)Google Scholar
  23. 23.
    Ghosh, P.K.; Ray, S.: Fabrication and properties of compocastaluminium-alumina particulate composite. Indian J. Technol. 26, 83–94 (1988)Google Scholar
  24. 24.
    Moustafa, S.F.: Casting of particulate Al-base composites. ZeitschriftFuerMetallkunde 88, 209–216 (1997)Google Scholar
  25. 25.
    Ray, S.: Casting of Composite Components, In: Proceedings of Inorganic Matrix Composites, India, pp. 69–89 (1996)Google Scholar
  26. 26.
    Aqida, S.N.; Ghazali, M.I.; Hashim, J.: Effects of porosity on mechanical properties of metal matrix composite: An overview. JurnalTeknologi 40, 17–32 (2004)Google Scholar
  27. 27.
    Askeland, D.R.: Sci Eng Mater, pp. 379–380. PWS Publishing Company, Boston (1994)Google Scholar
  28. 28.
    Warke, V.S.: Removal of hydrogen and solid particles from molten aluminum alloys in the rotating impeller degasser: mathematical models and computer simulations, MSc Thesis, Worcester Polytechnic Institute (2003)Google Scholar
  29. 29.
    Prabu, S.B.; Karunamoorthy, L.; Kathiresan, S.; Mohan, B.: Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite. J. Mater. Process. Technol. 171, 268–273 (2006)CrossRefGoogle Scholar
  30. 30.
    Kok, M.: Production and mechanical properties of \(\text{ Al }_{2}\text{ O }_{3}\) particle-reinforced 2024 aluminium alloy composites. J. Mater. Process. Technol. 161, 381–387 (2005)CrossRefGoogle Scholar
  31. 31.
    Rajan, H.M.; Ramabalan, S.; Dinaharan, I.; Vijay, S.J.: Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminum alloy cast composites. Mater. Des. 44, 438–445 (2013)CrossRefGoogle Scholar
  32. 32.
    Ahmad, S.N.A.S.; Hashim, J.; Ghazali, M.I.: Effect of porosity on tensile properties of cast article reinforced MMC. J. Compos. Mater. 41, 575–589 (2007)CrossRefGoogle Scholar
  33. 33.
    Liu, L.; Samuel, F.H.: Effect of inclusions on the tensile properties of Al–7% Si–0.35% Mg (A356.2) aluminium casting alloy. J. Mater. Sci. 33, 2269–2281 (1998)CrossRefGoogle Scholar
  34. 34.
    Hashim, J.; Looney, L.; Hashmi, M.S.J.: Metal matrix composites: production by the stir casting method. J. Mater. Process. Technol. 92, 1–7 (1999)CrossRefGoogle Scholar
  35. 35.
    Zhang, Z.F.; Zhang, L.C.; Mai, Y.W.: Particle effects on friction and wear of aluminum matrix composites. J. Mater. Sci. 30(23), 5999–6004 (1995)CrossRefGoogle Scholar
  36. 36.
    Pramanik, A.; Arsecularatne, J.A.; Zhang, L.C.: Micro-indentation of metal matrix composites: a 3D finite element analysis. In: Proceedings of the 5th Australasian Congress on Applied Mechanics, pp. 1–6 (2007)Google Scholar
  37. 37.
    Pereyra, R.; Shen, Y.L.: Characterization of particle concentration in indentation-deformed metal-ceramic composites. Mater. Charact. 53(5), 373–380 (2004)CrossRefGoogle Scholar
  38. 38.
    Sangghaleh, A.; Halali, M.: Effect of magnesium addition on the wetting of alumina by aluminum. Appl. Surf. Sci. 255(19), 8202–8206 (2009)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Ajay Singh Verma
    • 1
    Email author
  • Manjot Singh Cheema
    • 1
  • Suman Kant
    • 1
  • Narendra Mohan Suri
    • 1
  1. 1.Production and Industrial Engineering DepartmentPunjab Engineering College (Deemed to be university), PEC University of TechnologyChandigarhIndia

Personalised recommendations