Arabian Journal for Science and Engineering

, Volume 44, Issue 8, pp 6741–6755 | Cite as

Design and Experimental Investigation of Predictive Direct Power Control of Three-Phase Shunt Active Filter with Space Vector Modulation using Anti-windup PI Controller Optimized by PSO

  • Abdelbasset KramaEmail author
  • Laid Zellouma
  • Amar Benaissa
  • Boualaga Rabhi
  • Mansour Bouzidi
  • Mohamed Fouad Benkhoris
Research Article - Electrical Engineering


This paper presents a robust control scheme for shunt active power filter based on predictive direct power control with space vector modulation. The proposed control strategy solves the problem of variable switching frequency of predictive control strategy, and it offers simple and robust hardware implementation. It uses a discrete model of the system based on time domain to generate the average voltage vector, at each sampling period, with the aim of canceling the errors between the estimated active and reactive power values and their references. Concerning the DC-side voltage of the inverter, anti-windup PI controller is tuned offline using particle swarm optimization algorithm to deliver an optimal performance in DC bus voltage regulation. The overall system has been designed, simulated and validated experimentally; the obtained results in different phases demonstrate the higher performance and the better efficiency of the proposed system in terms of power quality enhancement.


Shunt active power filter Harmonic Predictive Direct power control Compensation Particle swarm optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge the Algerian General Direction of Research for providing the facilities to accomplish this project.


  1. 1.
    Emadi, A.; Abdolhosein, N.; Bekiarov, S.: Uninterruptible Power Supplies and Active Filters. CRC Press, Boca Raton (2005)Google Scholar
  2. 2.
    Bouzidi, M.; Benaissa, A.; Barkat, S.: Hybrid direct power/current control using feedback linearization of three-level four-leg voltage source shunt active power filter. Int. J. Electr. Power Energy Syst. 61, 629–646 (2014). CrossRefGoogle Scholar
  3. 3.
    Mahajan, V.; Agarwal, P.; Gupta, H.O.: Implementation of high-voltage multilevel harmonic filter based on rotated carrier modulation and artificial intelligence-based controllers. Arab. J. Sci. Eng. 39, 7127–7143 (2014). CrossRefGoogle Scholar
  4. 4.
    Saidi, S.; Abbassi, R.; Chebbi, S.: Quality improvement of shunt active power filter with direct instantaneous power estimator based on Virtual Flux. Int. J. Control. Autom. Syst. 14, 1309–1321 (2016). CrossRefGoogle Scholar
  5. 5.
    Chebabhi, A.; Fellah, M.K.; Kessal, A.; Benkhoris, M.F.: Comparative study of reference currents and DC bus voltage control for three-phase four-wire four-leg SAPF to compensate harmonics and reactive power with 3D SVM. ISA Trans. 57, 360–372 (2015). CrossRefGoogle Scholar
  6. 6.
    Sasaki, H.; Machida, T.: A new method to eliminate AC harmonic currents by magnetic compensation–consideration on basic design. IEEE Trans. Power Appl. Syst. 90, 2009–2019 (1971)CrossRefGoogle Scholar
  7. 7.
    Shankar, V.K.A.; Kumar, N.S.: Implementation of shunt active filter for harmonic compensation in a 3 phase 3 wire distribution network. Energy Procedia 117, 172–179 (2017). CrossRefGoogle Scholar
  8. 8.
    Abdul Rahman, N.F.; Mohd Radzi, M.A.; Che Soh, A.; Mariun, N.; Abd Rahim, N.: Significant insights into the operation of DC-link voltage control of a shunt active power filter using different control algorithms: a comparative study. Turk. J. Electr. Eng. Comput. Sci. 25, 2033–2043 (2017). CrossRefGoogle Scholar
  9. 9.
    Prakash Mahela, O.; Gafoor Shaik, A.: Topological aspects of power quality improvement techniques: a comprehensive overview. Renew. Sustain. Energy Rev. 58, 1129–1142 (2016). CrossRefGoogle Scholar
  10. 10.
    Benaissa, A.; Rabhi, B.; Benkhoris, M.F.; Zellouma, L.: An investigation on combined operation of five-level shunt active power filter with PEM fuel cell. Electr. Eng. 99, 649–663 (2017). CrossRefGoogle Scholar
  11. 11.
    Saad, S.; Zellouma, L.: Fuzzy logic controller for three-phase shunt active filter compensating harmonics and reactive power simultaneously. Electr. Power Syst. Res. 79, 1337–1341 (2009). CrossRefGoogle Scholar
  12. 12.
    Zellouma, L.; Rabhi, B.; Krama, A.; Benaissa, A.; Benkhoris, M.F.: Simulation and real time implementation of three phase four wire shunt active power filter based on sliding mode controller. Rev. Roum. Des Sci. Tech. Ser. Electrotech. Energ. 63, 77–82 (2018)Google Scholar
  13. 13.
    Benchouia, M.T.; Ghadbane, I.; Golea, A.; Srairi, K.; Benbouzid, M.E.H.: Implementation of adaptive fuzzy logic and PI controllers to regulate the DC bus voltage of shunt active power filter. Appl. Soft Comput. J. 28, 125–131 (2015). CrossRefGoogle Scholar
  14. 14.
    Pigazo, A.; Moreno, V.M.; Estébanez, E.J.: A recursive park transformation to improve the performance of synchronous reference frame controllers in shunt active power filters. IEEE Trans. Power Electron. 24, 2065–2075 (2009). CrossRefGoogle Scholar
  15. 15.
    Chaoui, A.; Gaubert, J.-P.; Krim, F.: Power quality improvement using DPC controlled three-phase shunt active filter. Electr. Power Syst. Res. 80, 657–666 (2010). CrossRefGoogle Scholar
  16. 16.
    Krama, A.; Laid, Z.; Boualaga, R.: Anti-windup proportional integral strategy for shunt active power filter interfaced by photovoltaic system using technique of direct power control. Rev. Roum. Sci. Techn. Electrotechn. Energ. 62, 252–257 (2017)Google Scholar
  17. 17.
    Aissa, O.; Moulahoum, S.; Colak, I.; Babes, B.; Kabache, N.: Analysis and experimental evaluation of shunt active power filter for power quality improvement based on predictive direct power control. Environ. Sci. Pollut. Res. (2017).
  18. 18.
    Ouchen, S.; Betka, A.; Gaubert, J.; Abdeddaim, S.: Simulation and real time implementation of predictive direct power control for three phase shunt active power filter using robust phase-locked loop. Simul. Model. Pract. Theory 78, 1–17 (2017). CrossRefGoogle Scholar
  19. 19.
    Subudhi, B.; Panda, P.C.; Panigrahi, R.: Model predictive-based shunt active power filter with a new reference current estimation strategy. IET Power Electron. 8, 221–233 (2015). CrossRefGoogle Scholar
  20. 20.
    Boukezata, B.; Gaubert, J.P.; Chaoui, A.; Hachemi, M.: Predictive current control in multifunctional grid connected inverter interfaced by PV system. Sol. Energy 139, 130–141 (2016). CrossRefGoogle Scholar
  21. 21.
    Bouafia, A.; Gaubert, J.-P.; Krim, F.: Predictive direct power control of three-phase pulsewidth modulation (PWM) rectifier using space-vector modulation (SVM). IEEE Trans. Power Electron. 25, 228–236 (2010). CrossRefGoogle Scholar
  22. 22.
    Tarisciotti, L.; Formentini, A.; Gaeta, A.; Degano, M.; Zanchetta, P.; Rabbeni, R.; Pucci, M.: Model predictive control for shunt active filters with fixed switching frequency. IEEE Trans. Ind. Appl. (2016).
  23. 23.
    van der Lee, J.H.; Svrcek, W.Y.; Young, B.R.: A tuning algorithm for model predictive controllers based on genetic algorithms and fuzzy decision making. ISA Trans. 47, 53–59 (2008). CrossRefGoogle Scholar
  24. 24.
    Sakthivel, A.; Vijayakumar, P.; Senthilkumar, A.; Lakshminarasimman, L.; Paramasivam, S.: Experimental investigations on ant colony optimized PI control algorithm for shunt active power filter to improve power quality. Control Eng. Pract. 42, 153–169 (2015). CrossRefGoogle Scholar
  25. 25.
    Kabalci, Y.; Kockanat, S.; Kabalci, E.: A modified ABC algorithm approach for power system harmonic estimation problems. Electr. Power Syst. Res. 154, 160–173 (2018). CrossRefGoogle Scholar
  26. 26.
    Sun, J.; Lai, C.; Wu, X.: Particle Swarm Optimization: Classical and Quantum Perspectives. CRC Press, Boca Raton (2012)zbMATHGoogle Scholar
  27. 27.
    Eberhart, R.; Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of Sixth International Symposium on Micro Machine and Human Science, pp. 39–43 (1995).
  28. 28.
    Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M.: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. J. 13, 2592–2612 (2013). CrossRefGoogle Scholar
  29. 29.
    Abido, M.A.: Optimal design of power-system stabilizers using particle swarm optimization. IEEE Trans. Energy Convers. 17, 406–413 (2002). CrossRefGoogle Scholar
  30. 30.
    Ghadimi, N.; Afkousi-Paqaleh, A.; Emamhosseini, A.: A PSO-based fuzzy long-term multi-objective optimization approach for placement and parameter setting of UPFC. Arab. J. Sci. Eng. 39, 2953–2963 (2014). CrossRefzbMATHGoogle Scholar
  31. 31.
    vandenBergh, F.; Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8, 225–239 (2004). CrossRefGoogle Scholar
  32. 32.
    Pati, S.; Sahu, B.K.; Panda, S.: Hybrid differential evolution particle swarm optimisation optimised fuzzy proportional–integral derivative controller for automatic generation control of interconnected power system. IET Gener. Transm. Distrib. 8, 1789–1800 (2014). CrossRefGoogle Scholar
  33. 33.
    Benhabib, M.C.; Saadate, S.: A new robust experimentally validated phase-locked loop for power electronic control. EPE J. 15, 36–48 (2005). CrossRefGoogle Scholar
  34. 34.
    Rodriguez, J.; Cortés, P.: Predictive Control of Power Converters and Electrical Drives. Wiley, New York (2012)CrossRefGoogle Scholar
  35. 35.
    Ohr, J.: Signals and Systems Anti-windup and Control of Systems with Multiple Input Saturations Tools, Solutions and Case Studies (2003)Google Scholar
  36. 36.
    Krama, A.; Zellouma, L.; Rabhi, B.: Improved control of shunt active power filter connected to a photovoltaic system using technique of direct power control. In: Proceedings of 2016 8th International Conference on Modelling, Identification and Control, ICMIC 2016 (2017)Google Scholar
  37. 37.
    Shi, Y.; Eberhart, R.: A modified particle swarm optimizer. In: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence. (Cat. No.98TH8360), pp. 69–73 (1998).

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.LEVRES Laboratory, Electrical Engineering DepartmentEl-Oued UniversityEl-OuedAlgeria
  2. 2.LAADI Laboratory, Electrical Engineering DepartmentDjelfa UniversityDjelfaAlgeria
  3. 3.LMSE Laboratory, Electrical Engineering DepartmentBiskra UniversityBiskraAlgeria
  4. 4.Département de l’Electronique et des Communications, Faculté des Nouvelles Technologies d’Information et CommunicationUniversité Kasdi MerbahOuarglaAlgeria
  5. 5.IREENA-CRTT Laboratory, Ecole Polytech NantesUniversity of NantesSaint NazaireFrance

Personalised recommendations