Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 647–654 | Cite as

Development of Nano-\(\hbox {WO}_{3}\) Doped with NiO for Wireless Gas Sensors

  • M. Adel Abozeid
  • H. Shokry HassanEmail author
  • I. Morsi
  • A. B. Kashyout
Research Article - Physics
  • 40 Downloads

Abstract

\(\hbox {WO}_{3}\) doped with NiO nanopowders with different NiO concentrations were prepared by sol–gel technique. The fabrication of the thin films for gas sensors applications was utilized using thermal vacuum evaporation technique. The morphological structure, crystallinity and optical properties of \(\hbox {WO}_{3}\) and NiO-doped \(\hbox {WO}_{3}\) nanopowders were characterized using scanning electron microscopy, X-ray diffraction and UV–Vis spectrophotometer, respectively. The electrical behaviors of the sensors were determined and measured by the two platinum electrodes sensor’s resistance with different gases at various temperatures. The results show that a great response to \(\hbox {CO}_{2}\) gas was 164% at 5% doping ratio which is applicable for all environmental and industrial fields. GSM module by MAX circuit was applied on gas sensor devices to send a wireless message telling that there is a leakage in the area which the sensor installed.

Keywords

\(\hbox {WO}_{3}\) \(\hbox {WO}_{3}{-}\hbox {NiO}\) Thin films Sputtering \(\hbox {CO}_{2}\) gas sensor Wireless 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors wish to thank Dr. Marwa Elkady for her assistance.

References

  1. 1.
    Sabri, Y.M.; Kandjani, A.E.; Ippolito, S.J.; Bhargava, S.K.: Ordered monolayer gold nano-urchin structures and their size induced control for high gas sensing performance. Sci. Rep. 6, 24625 (2016)Google Scholar
  2. 2.
    Chen, S.; Zhang, Q.; Zhang, J.; Gu, J.; Zhang, L.: A single Eu-doped \(\text{ In }_{2}\text{ O }_{3}\) nanobelt device for selective \(\text{ H }_{2}\text{ S }\) detection. Sens. Actuators B 149, 155–160 (2010)Google Scholar
  3. 3.
    Shokry Hassan, H.; Kashyout, A.; Morsi, I.; Nasser, A.; Abuklill, H.: Development of polypyrrole coated copper nanowires for gas sensor application. Sens. Bio Sens. Res. 5, 50–54 (2015)Google Scholar
  4. 4.
    El Fawal, G.F.; Shokry Hassan, H.; El-Aassar, M.R.; Elkady, M.F.: Electrospun polyvinyl alcohol nanofibers containing titanium dioxide for gas sensor applications. Arab. J. Sci. Eng. (2018).  https://doi.org/10.1007/s13369-018-3529-z
  5. 5.
    Ye, H.; Nallon, E.C.; Schnee, V.P.; Shi, C.; Yuan, H.; Jiang, K.; Gu, K.; Feng, S.; Wang, H.; Xiao, C.; Li, Q.: Optimization of the transient feature analysis for graphene chemical vapor sensors: a comprehensive study. IEEE Sens. J. 17, 6350–6359 (2017)Google Scholar
  6. 6.
    Jun, J.M.; Park, Y.H.; Lee, S.C.: Characteristics of a metal-loaded \(\text{ SnO }_{2}/\text{ WO }_{3}\) thick film gas sensor for detecting acetaldehyde gas. Bull. Korean Chem. Soc. 32, 1865–1872 (2011)Google Scholar
  7. 7.
    Sun, Y.F.; Liu, S.B.; Meng, F.L.; Liu, J.Y.; Jin, Z.; Kong, L.T.; Liu, J.H.: Metal oxide nanostructures and their gas sensing properties. Sensors 12, 2610–2631 (2012)Google Scholar
  8. 8.
    El Kady, M.; Shokry, H.; Hamad, H.: Effect of superparamagnetic nanoparticles on the physicochemical properties of nano hydroxyapatite for groundwater treatment: adsorption mechanism of Fe(II) and Mn(II). RSC Adv. 85, 82244–82259 (2016)Google Scholar
  9. 9.
    Kim, H.R.; Choi, K.I.; Kim, K.M.; Kim, I.D.; Cao, G.; Lee, J.H.: Ultra-fast responding and recovering \(\text{ C }_{2}\text{ H }_{5}\text{ OH }\) sensors using \(\text{ SnO }_{2}\) hollow spheres prepared and activated by Ni templates. Chem. Commun. 46, 5061–5063 (2010)Google Scholar
  10. 10.
    Shaaban, E.R.; El-Hagary, M.; El Sayed, M.; Hassan, H.S.; Ismail, Y.A.M.; Emam-Ismail, M.; Ali, A.S.: Structural, linear and nonlinear optical properties of co-doped ZnO thin films. Appl. Phys. A 122, 1–10 (2016)Google Scholar
  11. 11.
    Chen, L.; Weng, D.; Si, Z.; Wu, X.: Synergistic effect between ceria and tungsten oxide on \(\text{ WO }_{3}\)\(\text{ CeO }_{2}\)\(\text{ TiO }_{2}\) catalysts for \(\text{ NH }_{3}{-}\text{ SCR }\) reaction. Prog. Nat. Sci. 22, 265–272 (2012)Google Scholar
  12. 12.
    Tägtström, P.; Jansson, U.: Chemical vapour deposition of epitaxial \(\text{ WO }_{3}\) films. Thin Solid Films 352, 107–113 (1999)Google Scholar
  13. 13.
    Vilica, T.; Llobeta, E.: Nickel doped \(\text{ WO }_{3}\) nanoneedles deposited by a single step AACVD for gas sensing applications. Procedia Eng. 168, 206–210 (2016)Google Scholar
  14. 14.
    Bauersfelda, M.L.; Neumaiera, P.; Wöllensteina, J.: Nanoporous tungsten trioxide grown by electrochemical anodization of tungsten for gas sensing applications. Procedia Eng. 47, 204–207 (2012)Google Scholar
  15. 15.
    Mao, X.; Xiao, T.; Zhang, Q.; Liu, Z.; Liu, Z.: An electrochemical anodization strategy towards high-activity porous \(\text{ MoS }_{2}\) electrodes for the hydrogen evolution reaction. RSC Adv. 8, 15030–15035 (2018)Google Scholar
  16. 16.
    Huotaria, J.; Lappalainena, J.; Puustinena, J.; Baurb, T.; Alépéec, C.; Haapalainena, T.; Komulainena, S.; Pylvänäinena, J.; Spetza, A.L.: Pulsed laser deposition of metal oxide nanoparticles, agglomerates, and nanotrees for chemical sensors. Procedia Eng. 120, 1158–1161 (2015)Google Scholar
  17. 17.
    Elkady, M.F.; Shokry Hassan, H.; Hafez, E.E.; Fouad, A.: Construction of zinc oxide into different morphological structures to be utilized as antimicrobial agent against multidrug resistant bacteria bioinorg. Chem. Appl. 2015, 1–20 (2015)Google Scholar
  18. 18.
    Shen, Y.; Yamazaki, T.; Liu, Z.; Meng, D.; Kikuta, T.; Nakatani, N.: Influence of effective surface area on gas sensing properties of \(\text{ WO }_{3}\) sputtered thin films. Thin Solid Films 517, 2069–2072 (2009)Google Scholar
  19. 19.
    Heidari, E.K.; Zamani, C.; Marzbanrad, E.; Raissi, B.; Nazarpour, S.: \(\text{ WO }_{3}\)-based \(\text{ NO }_{2}\) sensors fabricated through low frequency AC electrophoretic deposition. Sens. Actuators B 146, 165–170 (2010)Google Scholar
  20. 20.
    Kashyout, A.B.; Soliman, H.M.A.; Shokry Hassan, H.; Abousehly, A.M.: Fabrication of ZnO and ZnO:Sb nanoparticles for gas sensor applications. J. Nanomater. 2010, 1–8 (2010)Google Scholar
  21. 21.
    Park, S.; Kim, H.; Jin, C.; Choi, S.-W.; Kim, S.S.; Lee, C.: Enhanced CO gas sensing properties of Pt-functionalized WO\(_3\) nanorods. Thermochim. Acta 542, 69–73 (2012)Google Scholar
  22. 22.
    Chang, X.; Sun, S.; Yin, Y.: Green synthesis of tungsten trioxide monohydrate nanosheets as gas sensor. Mater. Chem. Phys. 126, 717–721 (2011)Google Scholar
  23. 23.
    Sathiyaraj, E.; Gurumoorthy, G.; Thirumaran, S.: Nickel(II) dithiocarbamate complexes containing the pyrrole moiety for sensing anions and synthesis of nickel sulfide and nickel oxide nanoparticles. New J. Chem. 39, 5336–5349 (2015)Google Scholar
  24. 24.
    Balzer, R.; Drago, V.; Schreiner, W.H.; Probst, L.F.: Synthesis and structure–activity relationship of a \(\text{ WO }_{3}\) catalyst for the total oxidation of BTX. J. Braz. Chem. Soc. 25, 2026–2031 (2014)Google Scholar
  25. 25.
    Kim, H.J.; Lee, J.H.: Highly sensitive and selective gas sensors using \(p\)-type oxide semiconductors: overview. Sens. Actuators B 192, 607–627 (2014)Google Scholar
  26. 26.
    Mu, W.; Xie, X.; Li, X.; Zhang, R.; Yu, Q.; Lv, K.; Wei, H.; Jian, Y.: Characterizations of Nb-doped \(\text{ WO }_{3}\) nanomaterials and their enhanced photocatalytic performance. RSC Adv. 4, 36064–36070 (2014)Google Scholar
  27. 27.
    González-Borrero, P.P.; Sato, F.; Medina, A.N.; Baesso, M.L.; Bento, A.C.: Energy-level and optical properties of nitrogen doped TiO\(_2\): an experimental and theoretical study. Appl. Phys. Lett. 96, 061909 (2010)Google Scholar
  28. 28.
    Meng, Z.D.; Zhu, L.; Choi, J.G.; Park, C.Y.; Oh, W.C.: Preparation, characterization and photocatalytic behavior of \(\text{ WO }_{3}\)-fullerene/\(\text{ TiO }_{2}\) catalysts under visible light. Nanoscale Res. 6, 459 (2011)Google Scholar
  29. 29.
    Shokry Hassan, H.; Kashyout, A.B.; Soliman, H.M.A.; Uosif, M.A.; Afify, N.: Effect of reaction time and Sb doping ratios on the architecturing of ZnO nanomaterials for gas sensor applications. Appl. Surf. Sci. 277, 73–82 (2013)Google Scholar
  30. 30.
    Yang, M.-Z.; Dai, C.-L.; Wu, C.-C.: A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip. Sensors 11, 11112–11121 (2011)Google Scholar
  31. 31.
    Wang, C.; Liu, J.; Yang, Q.; Sun, P.; Gao, Y.; Liu, F.; Zheng, J.; Lu, G.: Ultrasensitive and low detection limit of acetone gas sensor based on W-doped NiO hierarchical nanostructure. Sens. Actuators B 220, 59–67 (2015)Google Scholar
  32. 32.
    Shokry Hassan, H.; Kashyout, A.; Morsi, I.; Nasser, A.; Raafat, A.: Fabrication and characterization of gas sensor micro-arrays. Sens. Bio Sens. Res. 1, 34–40 (2014)Google Scholar
  33. 33.
    Zeng, J.; Hu, M.; Wang, W.; Chen, H.; Qin, Y.: \(\text{ NO }_{2}\)-sensing properties of porous \(\text{ WO }_{3}\) gas sensor based on anodized sputtered tungsten thin film. Sens. Actuators B 161, 447–452 (2012)Google Scholar
  34. 34.
    Prima, E.C.; Munifah, S.S.; Salam, R.; Aziz, M.H.; Suryani, A.T.: Automatic water tank filling system controlled using ArduinoTM based sensor for home application. Procedia Eng. 170, 373–377 (2017)Google Scholar
  35. 35.
    Drost, S.; de Kruif, B.J.; Newport, D.: Arduino control of a pulsatile flow rig. Med. Eng. Phys. 51, 67–71 (2018)Google Scholar
  36. 36.
    Barbon, G.; Margolis, M.; Palumbo, F.; Raimondi, F.; Weldin, N.: Taking Arduino to the internet of things: the ASIP programming model. Comput. Commun. 89–90, 128–140 (2016)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Communication and Electronics departmentArab Academy for Science and Maritime Transport, (AAST)AlexandriaEgypt
  2. 2.Physics Department, College of ScienceJouf UniversitySakakaSaudi Arabia
  3. 3.Electronic Materials Researches Department, Advanced Technology and New Materials Research InstituteCity of Scientific Research and technological applications (SRTA-City)AlexandriaEgypt

Personalised recommendations