Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 677–693 | Cite as

A Review on Fuel Cell-Based Locomotive Powering Options for Sustainable Transportation

  • Osamah SiddiquiEmail author
  • Ibrahim Dincer
Review Article - Mechanical Engineering


Conventional locomotives employing diesel-based propulsion systems have raised concerns about the environment and hence sustainable development due to their emissions. To obtain an environmentally benign railway system, fuel cell-based locomotives are considered promising candidates owing to their high efficiencies as well as environmental performance. In the present study, a review of the development of fuel cell-based locomotives is conducted and their current progress is described. Further, investigations conducted on various aspects of these types of locomotives are discussed. The literature studies were found to be focused on four main areas namely (1) prototype design/analysis, (2) energy management, (3) feasibility and economic assessment and (4) environmental performance. Fuel cell-based hybrid locomotives entail the potential to reduce the environmental emissions considerably with similar investment costs as diesel fuel-based locomotives. Nearly 3318 tonnes/year of \(\hbox {CO}_{2}\) emissions may be reduced by replacing diesel engine locomotives with fuel cell trains. Approximately 98% of \(\hbox {NO}_{\mathrm{x}}\) emissions are estimated to be reduced with the utilization of hybrid fuel cell locomotives. Moreover, several control systems utilizing fuzzy logic control strategy have been proved to be efficient energy management aids for such locomotives. Overall locomotive efficiencies of 50.9% are achievable with the deployment of such control strategies that effectively manage the power demands between the fuel cells, batteries and supercapacitors.


Energy Fuel cells Locomotive Feasibility Environmental performance Powering options 

List of abbreviations


Alkaline fuel cell

\(\hbox {CO}_{2}\)

Carbon dioxide


Copper chlorine


Direct current


Greenhouse gas emissions


Heat exchanger


Solid oxide fuel cell


Molten carbonate fuel cell


Phosphoric acid fuel cell


Proton exchange membrane


Particulate matter


Particle swarm optimization

\(\hbox {NO}_{\mathrm{x}}\)

Nitrogen oxides


Reactive organic compounds

\(\hbox {SO}_{\mathrm{x}}\)

Sulphur oxides


Total organic compounds




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    International Energy Agency (IEA) World Energy Balances (2015). Accessed 1 June 2018
  2. 2.
    Transport, Energy and CO2. IEA. Accessed 1 June 2018
  3. 3.
    Worldbank, Fossil fuel energy consumption (% of total) \({\vert }\) Data (2014). Accessed 24 Mar 2017
  4. 4.
    Transportation electrification. Hydro Quebec. Accessed 1 June 2018
  5. 5.
    Scott, D.S.; Rogner, H.; Scott, M.B.: Fuel cell locomotives in Canada. Int. J. Hydrog. Energy 18(3), 253–263 (1993)CrossRefGoogle Scholar
  6. 6.
    Moghbelli, H.; Gao, Y.; Langari, R.; Ehsani, M.: Investigation of hybrid fuel cell technology applications on the future passenger railroad transportation. In: Proceedings of the 2003 IEEE/ASME Joint Rail Conference, pp. 39–53 (2003)Google Scholar
  7. 7.
    Zavada, J.; Zavada, J.B.; Plesa, T.: Hybrid propulsion of railway vehicles. In: Proceedings of 16th International Scientific-Technical Trans & AutoMoto Conference, pp. 11–14 (2009)Google Scholar
  8. 8.
    Miller, A.R.; Hess, K.S.; Barnes, D.L.; Erickson, T.L.: System design of a large fuel cell hybrid locomotive. J. Power Sources 173, 935–942 (2007)CrossRefGoogle Scholar
  9. 9.
    US Department of Energy, Comparison of fuel cell technologies. Accessed 1 June 2018
  10. 10.
    Carrette, L.S.U.; Friedrich, K.A.: Fuel cells–fundamentals and applications. Fuel Cells 1, 5–39 (2001)CrossRefGoogle Scholar
  11. 11.
    Prater, K.B.: Solid polymer fuel cells for transport and stationary applications. J. Power Sources 61, 105–109 (1996)CrossRefGoogle Scholar
  12. 12.
    Kordesch, K.V.S.G.: Fuel Cells and Their Applications. Wiley, Hoboken (1996)CrossRefGoogle Scholar
  13. 13.
    Sopian, K.W.D.W.: Challenges and future developments in proton exchange membrane fuel cells. Renew. Energy 31, 719–27 (2006)CrossRefGoogle Scholar
  14. 14.
    Wang, Y.; Chen, K.S.; Mishler, J.; Cho, S.C.; Adroher, X.C.: A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 88, 981–1007 (2011)CrossRefGoogle Scholar
  15. 15.
    Kordesch, K.; Hacker, V.; Gsellmann, J.; Cifrain, M.; Faleschini, G.; Enzinger, P.; Fankhauser, R.; Ortner, M.; Muhr, M.; Aronson, R.R.: Alkaline fuel cells applications. J. Power Sources 86, 162–165 (2000)CrossRefGoogle Scholar
  16. 16.
    Bidault, F.; Brett, D.J.L.; Middleton, P.H.; Brandon, N.P.: Review of gas diffusion cathodes for alkaline fuel cells. J. Power Sources 187, 39–48 (2009)CrossRefGoogle Scholar
  17. 17.
    Nijmeijer, K.; Merle, G.; Wessling, M.: Anion exchange membranes for alkaline fuel cells: a review. J. Membr. Sci. 377, 1–35 (2011)CrossRefGoogle Scholar
  18. 18.
    Gottesfeld, S.: Anion exchange membrane fuel cells: current status and remaining challenges. J. Power Sources 375, 170–184 (2018)CrossRefGoogle Scholar
  19. 19.
    Wang, Y.; Qiao, J.; Baker, R.; Zhang, J.: Alkaline polymer electrolyte membranes for fuel cell applications. Chem. Soc. Rev. 42, 5768–5787 (2013)CrossRefGoogle Scholar
  20. 20.
    Varcoe, J.R.: Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5(2), 187–200 (2005)CrossRefGoogle Scholar
  21. 21.
    AFC Energy (2018). Accessed 1 June 2018
  22. 22.
    Badwal, S.; Ciacchi, F.: Oxygen-ion conducting electrolyte materials for solid oxide fuel cells. Ionics 6, 1–21 (2000)CrossRefGoogle Scholar
  23. 23.
    Boldrin, P.; Ruiz-Trejo, E.; Mermelstein, J.; Bermúdez, J.M.; Reina, T.R.; Brandon, N.P.: Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis. Chem. Rev. 116, 13633 (2016)CrossRefGoogle Scholar
  24. 24.
    Brodnikovskii, E.M.: Solid oxide fuel cell anode materials. Powder Metall. Met. Ceram. 54, 166–174 (2015)CrossRefGoogle Scholar
  25. 25.
    da Silva, F.S.; de Souza, T.M.: Novel materials for solid oxide fuel cell technologies: a literature review. Int. J. Hydrog. Energy 42, 26020–26036 (2017)CrossRefGoogle Scholar
  26. 26.
    Gao, Z.; Mogni, L.V.; Miller, E.C.; Railsback, J.G.; Barnett, S.A.: A perspective on low-temperature solid oxide fuel cells. Energy Environ. Sci. 9, 162–1644 (2016)Google Scholar
  27. 27.
    Mahato, N.; Banerjee, A.; Gupta, A.; Omar, S.; Balani, K.: Progress in material selection for solid oxide fuel cell technology: a review. Progr. Mater. Sci. 72, 141–337 (2015)CrossRefGoogle Scholar
  28. 28.
    Minh, N.: Ceramic fuel-cells. J. Am. Ceram. Soc. 76, 563–588 (1993)CrossRefGoogle Scholar
  29. 29.
    Saravanan, R.: Solid Oxide Fuel Cell (SOFC) Materials. Materials Research Forum LLC., Millersville (2018)Google Scholar
  30. 30.
    Singhal, S.; Kendall, K.: High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Elsevier, Amsterdam (2003)Google Scholar
  31. 31.
    Weber, A.; Ivers-Tiffee, E.: Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications. J. Power Sources 127, 273–283 (2004)CrossRefGoogle Scholar
  32. 32.
    Zhang, Y.; Knibbe, R.; Sunarso, J.; Zhong, Y.; Zhou, W.; Shao, Z.; Zhu, Z.: Solid-oxide fuel cells: recent progress on advanced materials for solid-oxide fuel cells operating below \(500\, ^{\circ }\text{C}\) (Adv. Mater. 48/2017). Adv. Mater. 29(48) (2017).
  33. 33.
    Veyo, S.: The westinghouse solid oxide fuel cell program—a status report. In: LECEC 96-Proceedings of the 31st Intersociety Energy Conversion Engineering Conference, pp. 1138–1143 (1996)Google Scholar
  34. 34.
    Ideris, A.; Croiset, E.; Pritzker, M.; Amin, A.: Direct-methane solid oxide fuel cell (SOFC) with Ni-SDC anode-supported cell. Int. J. Hydrog. Energy 42(36), 23118–23129 (2017)CrossRefGoogle Scholar
  35. 35.
    Ding, H.; Tao, Z.; Liu, S.; Yang, Y.: A redox-stable direct-methane solid oxide fuel cell (SOFC) with Sr2FeNb0.2Mo0.8O6-\(\updelta \) double perovskite as anode material. J. Power Sources 327, 573–579 (2016)CrossRefGoogle Scholar
  36. 36.
    Li, P.; Li, J.; Li, Y.; Yu, B.; Yao, X.; Zhao, Y.: Improved activity and stability of Ni–Ce0.8Sm0.2O1.9 anode for solid oxide fuel cells fed with methanol through addition of molybdenum. J. Power Sources 320, 251–256 (2016)CrossRefGoogle Scholar
  37. 37.
    Elleuch, A.; Halouani, K.; Li, Y.: Bio-methanol fueled intermediate temperature solid oxide fuel cell: A future solution as component in auxiliary power unit for eco-transportation. Mater. Des. 97, 331–340 (2016)CrossRefGoogle Scholar
  38. 38.
    Li, P.; Li, J.; Li, Y.; Yu, X.; Yao, B.; Zhao, Y.: A single layer solid oxide fuel cell composed of La2NiO4 and doped ceria-carbonate with H2 and methanol as fuels. Int. J. Hydrog. Energy 41(21), 9059–9065 (2016)CrossRefGoogle Scholar
  39. 39.
    Qu, J.; Wang, W.; Chen, Y.; Deng, X.; Shao, Z.: Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures. Appl. Energy 164, 563–571 (2015)CrossRefGoogle Scholar
  40. 40.
    Li, Y.; Wong, L.M.; Xie, H.; Wang, S.; Su, P.: Nanoporous palladium anode for direct ethanol solid oxide fuel cells with nanoscale proton-conducting ceramic electrolyte. J. Power Sources 340, 98–103 (2016)CrossRefGoogle Scholar
  41. 41.
    Tippawan, A.; Arpornwichanop, P.; Dincer, I.: Energy and exergy analyses of an ethanol-fueled solid oxide fuel cell for a trigeneration system. Energy 87, 228–239 (2015)CrossRefGoogle Scholar
  42. 42.
    Steil, M.C.; Nobrega, S.D.; Georges, S.; Gelin, P.; Uhlenbruck, S.; Fonseca, F.C.: Durable direct ethanol anode-supported solid oxide fuel cell. Appl. Energy 199, 180–186 (2017)CrossRefGoogle Scholar
  43. 43.
    Yang, J.; Molouk, A.F.S.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K.: A stability study of Ni/Yttria-stabilized zirconia anode for direct ammonia solid oxide fuel cells. ACS Appl. Mater. Interfaces 7(51), 28701 (2015)CrossRefGoogle Scholar
  44. 44.
    Siddiqui, O.; Dincer, I.: Analysis and performance assessment of a new solar-based multigeneration system integrated with ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle. J. Power Sources 370, 138–154 (2017)CrossRefGoogle Scholar
  45. 45.
    Cinti, G.; Discepoli, G.; Sisani, E.; Desideri, U.: SOFC operating with ammonia: stack test and system analysis. Int. J. Hydrog. Energy 41(31), 13583–13590 (2016)CrossRefGoogle Scholar
  46. 46.
    Alnegren, P.; Grolig, J.G.; Ekberg, J.; Göransson, G.; Svensson, J.E.: Metallic bipolar plates for high temperature polymer electrolyte membrane fuel cells. Fuel Cells 16(1), 39–45 (2016)CrossRefGoogle Scholar
  47. 47.
    Kakati, B.K.; Sathiyamoorthy, D.; Verma, A.: Electrochemical and mechanical behavior of carbon composite bipolar plate for fuel cell. Int. J. Hydrog. Energy 35(9), 4185–4194 (2010)CrossRefGoogle Scholar
  48. 48.
    Weissbecker, K.; Wippermann, V.; Lehnert, W.: Electrochemical corrosion study of metallic materials in phosphoric acid as bipolar plates for HT-PEFCs. J. Electrochem. Soc. 161(14), F1437–F1447 (2014)CrossRefGoogle Scholar
  49. 49.
    Bevilacqua, N.; George, M.G.; Galbiati, S.; Bazylak, A.; Zeis, R.: Phosphoric acid invasion in high temperature PEM fuel cell gas diffusion layers. Electrochem. Acta 257, 89–98 (2017)CrossRefGoogle Scholar
  50. 50.
    Lee, D.; Lee, D.G.: Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs). J. Power Sources 327, 119–126 (2016)CrossRefGoogle Scholar
  51. 51.
    United Technologies Corp. Accessed 1 June 2018
  52. 52.
    Brenscheidt, T.; Janowitz, K.; Salge, H.; Wendt, H.; Brammer, F.: Performance of ONSI PC25 PAFC cogeneration plant. Int. J. Hydrog. Energy 23(1), 53–56 (1998)CrossRefGoogle Scholar
  53. 53.
    Hojo, N.; Okuda, M.; Nakamura, M.: Phosphoric acid fuel cells in Japan. J. Power Sources 61(1–2), 73–77 (1996)CrossRefGoogle Scholar
  54. 54.
    Miyake, Y.; Akiyama, Y.; Hamada, A.; Itoh, Y.; Oda, K.; Sumi, S.: Status of fuel cells R and D activities at Sanyo. J. Power Sources 61, 155–160 (1996)CrossRefGoogle Scholar
  55. 55.
    Hu, Y.; Jiang, Y.; Jensen, J.O.; Cleemann, L.N.; Li, Q.: Catalyst evaluation for oxygen reduction reaction in concentrated phosphoric acid at elevated temperatures. J. Power Sources 375, 77–81 (2018)CrossRefGoogle Scholar
  56. 56.
    Chen, X.; Wang, Y.; Zhao, Y.; Zhou, Y.: A study of double functions and load matching of a phosphoric acid fuel cell/heat-driven refrigerator hybrid system. Energy 101, 359–365 (2016)CrossRefGoogle Scholar
  57. 57.
    Ito, H.: Economic and environmental assessment of phosphoric acid fuel cell-based combined heat and power system for an apartment complex. Int. J. Hydrog. Energy 42(23), 15449–15463 (2017)CrossRefGoogle Scholar
  58. 58.
    Wang, H.; Chang, C.; Huang, Y.; Su, Y.; Tseng, F.: A high-yield and ultra-low-temperature methanol reformer integratable with phosphoric acid fuel cell (PAFC). Energy 133, 1142–1152 (2017)CrossRefGoogle Scholar
  59. 59.
    Wu, M.; Zhang, H.; Zhao, J.; Wang, F.; Yuan, J.: Performance analyzes of an integrated phosphoric acid fuel cell and thermoelectric device system for power and cooling cogeneration. Int. J. Refrig. 89, 61–69 (2018)CrossRefGoogle Scholar
  60. 60.
    Fuel cell & Hydrogen Energy Association. Accessed 1 June 2018
  61. 61.
    Shipboard testing now under way for FellowSHIP project. Fuel Cells Bulletin, no. 11 (2009)Google Scholar
  62. 62.
    Baron, R.; Wejrzanowski, T.; Szabłowski, Ł.; Szczęśniak, A.; Milewski, J.; Fung, K.: Dual ionic conductive membrane for molten carbonate fuel cell. Int. J. Hydrog. Energy 43(16), 8100–8104 (2018)CrossRefGoogle Scholar
  63. 63.
    Jienkulsawad, P.; Saebea, D.; Patcharavorachot, Y.; Kheawhom, S.; Arpornwichanop, A.: Analysis of a solid oxide fuel cell and a molten carbonate fuel cell integrated system with different configurations. Int. J. Hydrog. Energy 43(2), 932–942 (2018)CrossRefGoogle Scholar
  64. 64.
    Czelej, K.; Cwieka, K.; Colmenares, J.C.; Kurzydlowski, K.J.: Catalytic activity of NiO cathode in molten carbonate fuel cells. Appl. Catal. B Environ. 222, 73–75 (2018)CrossRefGoogle Scholar
  65. 65.
    De Lorenzo, G.; Milewski, J.; Fragiacomo, P.: Theoretical and experimental investigation of syngas-fueled molten carbonate fuel cell for assessment of its performance. Int. J. Hydrog. Energy 42(48), 28816–28828 (2017)CrossRefGoogle Scholar
  66. 66.
    Milewski, J.; Futyma, K.; Szczęśniak, A.: Molten carbonate fuel cell operation under high concentrations of SO2 on the cathode side. Int. J. Hydrog. Energy 41(41), 18769–18777 (2016)CrossRefGoogle Scholar
  67. 67.
    Fuel cell mine locomotive passes initial tests. Fuel Cells Bull. 2002(10), 5–6 (2002)Google Scholar
  68. 68.
    Consortium to develop fuel cell locomotive. Fuel Cells Bull. 2003(10), 2 (2003)Google Scholar
  69. 69.
    Design milestone for fuel cell locomotive. Fuel Cells Bull. 2004(4), 6 (2004)Google Scholar
  70. 70.
    Contract to develop fuel cell power for rail vehicle. Fuel Cells Bull. (11), 7 (2005)Google Scholar
  71. 71.
    Japanese train company to test world’s first fuel cell passenger train. Fuel Cells Bull. (6), 4 (2006)Google Scholar
  72. 72.
    BNSF, Vehicle Projects demonstrate fuel cell switch locomotive I. Fuel Cells Bull. (8), 4 (2009)Google Scholar
  73. 73.
    US–SA partnership to produce five fuel cell mine locomotives. Fuel Cells Bull. (2), 4 (2012)Google Scholar
  74. 74.
    Anglo American fuel cell mine locomotive in South Africa. Fuel Cells Bull. (6), 12 (2012)Google Scholar
  75. 75.
    Ballard signs Chinese deal to develop fuel cell modules for trams. Fuel Cells Bull. (7), 4–5 (2015)Google Scholar
  76. 76.
    Latvian Railways plan locomotives powered with Ballard fuel cells. Fuel Cells Bull. (9), 6 (2016)Google Scholar
  77. 77.
    Alstom unveils Coradia iLint hydrogen fuel cell powered train for European regional market. Fuel Cells Bulle. 9, 1 (2016)Google Scholar
  78. 78.
    Indian Railways in project to develop fuel cell powered train. Fuel Cells Bull. (3), 4–5 (2018)Google Scholar
  79. 79.
    Hoffrichter, A.; Fisher, P.; Tutcher, J.; Hillmansen, S.; Roberts, C.: Performance evaluation of the hydrogen-powered prototype locomotive ‘Hydrogen Pioneer’. J. Power Sources 250, 120–127 (2014)CrossRefGoogle Scholar
  80. 80.
    Peng, F.; Chen, W.; Liu, Z.; Li, Q.; Dai, C.: System integration of China ’ s first proton exchange membrane fuel cell locomotive. Int. J. Hydrog. Energy 39, 13886–13893 (2014)CrossRefGoogle Scholar
  81. 81.
    Fernandez, L.M.; Garcia, P.; Garcia, C.A.; Torreglosa, J.P.; Jurado, F.: Comparison of control schemes for a fuel cell hybrid tramway integrating two dc/dc converters. Int. J. Hydrog. Energy 35(11), 5731–5744 (2010)CrossRefGoogle Scholar
  82. 82.
    Fernandez, L.M.; Garcia, P.; Andrés, C.; Jurado, F.: Hybrid electric system based on fuel cell and battery and integrating a single dc/dc converter for a tramway. Energy Convers. Manag. 52(5), 2183–2192 (2011)CrossRefGoogle Scholar
  83. 83.
    Guo, L.; Yedavalli, K.; Zinger, D.: Design and modeling of power system for a fuel cell hybrid switcher locomotive. Energy Convers. Manag. 52(2), 1406–1413 (2011)CrossRefGoogle Scholar
  84. 84.
    Torreglosa, J.P.; Jurado, F.; Garcı, P.; Ferna’ndez, L.M.: Application of cascade and fuzzy logic based control in a model of a fuel-cell hybrid tramway. Eng. Appl. Artif. Intell. 24, 1–11 (2011)CrossRefGoogle Scholar
  85. 85.
    Torreglosa, J.P.; Jurado, F.; Garcı’a, P.; Ferna’ndez, L.M.: Hybrid fuel cell and battery tramway control based on an equivalent consumption minimization strategy. Control Eng. Pract. 19, 1182–1194 (2011)CrossRefGoogle Scholar
  86. 86.
    Li, Q.; Chen, W.; Liu, Z.; Li, M.; Ma, L.: Development of energy management system based on a power sharing strategy for a fuel cell-battery-supercapacitor hybrid tramway. J. Power Sources 279, 267–280 (2015)CrossRefGoogle Scholar
  87. 87.
    Li, Q.; Yang, H.; Han, Y.; Li, M.; Chen, W.: A state machine strategy based on droop control for an energy management system of PEMFC-battery- supercapacitor hybrid tramway. Int. J. Hydrog. Energy 41, 16148–16159 (2016)CrossRefGoogle Scholar
  88. 88.
    Zhang, G.; Chen, W.; Li, Q.: Modeling, optimization and control of a FC/battery hybrid locomotive based on ADVISOR. Int. J. Hydrog. Energy 42, 18568–18583 (2017)CrossRefGoogle Scholar
  89. 89.
    Hong, Z.; Li, Q.; Han, Y.; Shang, W.; Zhu, Y.; Chen, W.: An energy management strategy based on dynamic power factor for fuel cell/battery hybrid locomotive. Int. J. Hydrog. Energy 43, 3261–3272 (2018)CrossRefGoogle Scholar
  90. 90.
    Fragiacomo, P.; Francesco, P.: Energy performance of a fuel cell hybrid system for rail vehicle propulsion. In: September 2017, Lecce, Italy 72nd Conference of the Italian Thermal Machines Engineering Association, vol. 126, pp. 1051–1058 (2017)Google Scholar
  91. 91.
    Zhang, W.: Comparison of daily operation strategies for a fuel cell/battery tram. Int. J. Hydrog. Energy 42, 18532–18539 (2017)CrossRefGoogle Scholar
  92. 92.
    Li, Q.; Chen, W.; Liu, Z.; Guo, A.; Huang, J.: Nonlinear multivariable modeling of locomotive proton exchange membrane fuel cell system. Int. J. Hydrog. Energy 39, 13777–13786 (2014)CrossRefGoogle Scholar
  93. 93.
    Miller, A.R.; Peters, J.; Smith, B.E.; Velev, O.A.: Analysis of fuel cell hybrid locomotives. J. Power Sources 157, 855–861 (2006)CrossRefGoogle Scholar
  94. 94.
    Schroeder, D.J.; Majumdar, P.: Feasibility analysis for solid oxide fuel cells as a power source for railroad road locomotives. Int. J. Hydrog. Energy 35(20), 11308–11314 (2010)CrossRefGoogle Scholar
  95. 95.
    Martinez, A.S.; Brouwer, J.; Samuelsen, G.S.: Feasibility study for SOFC-GT hybrid locomotive power: Part I. Development of a dynamic 3.5 MW SOFC-GT FORTRAN model. J. Power Sources, 213(x), 203–217 (2012)Google Scholar
  96. 96.
    Martinez, A.S.; Brouwer, J.; Samuelsen, G.S.: Feasibility study for SOFC-GT hybrid locomotive power part II System packaging and operating route simulation. J. Power Sources 213(X), 358–374 (2012)CrossRefGoogle Scholar
  97. 97.
    Zhang, W.: Comparison study on life-cycle costs of different trams powered by fuel cell systems and others. Int. J. Hydrog. Energy 41, 16577–16591 (2016)CrossRefGoogle Scholar
  98. 98.
    Haseli, Y.; Naterer, G.F.; Dincer, I.Ã.: Comparative assessment of greenhouse gas mitigation of hydrogen passenger trains. Int. J. Hydrog. Energy 33, 1788–1796 (2008)CrossRefGoogle Scholar
  99. 99.
    Meegahawatte, D.; Hillmansen, S.; Roberts, C.; Falco, M.; Mcgordon, A.; Jennings, P.: Analysis of a fuel cell hybrid commuter railway vehicle. J. Power Sources 195(23), 7829–7837 (2010)CrossRefGoogle Scholar
  100. 100.
    Marin, G.D.; Naterer, G.F.; Gabriel, K.: Rail transportation by hydrogen versus electrification—Case study for Ontario Canada, I : propulsion and storage. Int. J. Hydrog. Energy 35, 6084–6096 (2010)CrossRefGoogle Scholar
  101. 101.
    Martinez, A.S.; Brouwer, J.; Samuelsen, G.S.: Comparative analysis of SOFC-GT freight locomotive fueled by natural gas and diesel with onboard reformation. Appl. Energy 148, 421–438 (2015)CrossRefGoogle Scholar
  102. 102.
    Ortech Environmental, Air Quality Assessment Report for GO Transit Georgetown, Mississauga (2009)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Clean Energy Research Laboratory, Faculty of Engineering and Applied ScienceUniversity of Ontario Institute of TechnologyOshawaCanada

Personalised recommendations