Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 1–32 | Cite as

Atomistic Simulation: A Unique and Powerful Computational Tool for Corrosion Inhibition Research

  • I. B. ObotEmail author
  • K. Haruna
  • T. A. Saleh
Review Article - Chemistry

Abstract

It is difficult to understand the atomistic information on the interaction at the metal/corrosion inhibitor interface experimentally which is a key to understanding the mechanism by which inhibitors prevent the corrosion of metals. Atomistic simulations (molecular dynamics and Monte Carlo) are mostly performed in corrosion inhibition research to give deeper insights into the mechanism of inhibition of corrosion inhibitors on metal surfaces at the atomic and molecular time scales. A lot of works on the use of molecular dynamics and Monte Carlo simulation to investigate corrosion inhibition phenomenon have appeared in the literature in recent times. However, there is still a lack of comprehensive review on the understanding of corrosion inhibition mechanism using these atomistic simulation methodologies. In this review paper, we first of all introduce briefly some important molecular modeling simulations methods. Thereafter, the basic theories of molecular dynamics and Monte Carlo simulations are highlighted. Several studies on the use of atomistic simulations as a modern tool in corrosion inhibition research are presented. Some mechanistic and energetic information on how organic corrosion inhibitors interact with iron and copper metals are provided. This atomic and molecular level information could aid in the design, synthesis and development of new and novel corrosion inhibitors for industrial applications.

Keywords

Molecular modeling Atomistic simulations Monte Carlo (MC) simulations Molecular dynamics (MD) simulations Corrosion inhibitor DFT Force fields Density functional based tight binding (DFTB) 

Notes

Acknowledgements

The authors would like to acknowledge the support received from King Abdulaziz City for Science and Technology (KACST) for funding this work under the National Science Technology Plan (NSTIP) Grant No. 14-ADV2448-04. Also, the support provided by the Deanship of Scientific Research (DSR) and the Center of Research Excellence in Corrosion (CORE-C), at King Fahd University of Petroleum & Minerals (KFUPM) is gratefully acknowledged.

References

  1. 1.
    Mogford, J.: Fatal accident investigation report, Texas City (2005)Google Scholar
  2. 2.
    Berlik, M.; Bernstein, A.; Chivian, E.; Epstein, P.; McCally, M. (eds.): Protecting Health, Preserving the Environment and Propelling the Economy: An Environmental Health Briefing Book. Physicians for Social Responsibility, Washington (2006)Google Scholar
  3. 3.
    Jacobson, G. (ed.): International Measures of Prevention, Application, and Economics of Corrosion Technologies Study. NACE International, Houston (2016)Google Scholar
  4. 4.
    Elbelghiti, M.; Karzazi, Y.; Dafali, A.; Hammouti, B.; Bentiss, F.; Obot, I.B.; Bahadur, I.; Ebenso, E.E.: Experimental, quantum chemical and Monte Carlo simulation studies of 3,5-disubstituted-4-amino-1,2,4-triazoles as corrosion inhibitors on mild steel in acidic medium. J. Mol. Liq. 218, 281–293 (2016).  https://doi.org/10.1016/j.molliq.2016.01.076 Google Scholar
  5. 5.
    Fu, J.; Zang, H.; Wang, Y.; Li, S.; Chen, T.; Liu, X.: Experimental and theoretical study on the inhibition performances of quinoxaline and its derivatives for the corrosion of mild steel in hydrochloric acid. Ind. Eng. Chem. Res. 51, 6377–6386 (2012)Google Scholar
  6. 6.
    Amin, M.A.; Khaled, K.F.: Copper corrosion inhibition in O\(_2\)-saturated H\(_2\)SO\(_4\) solutions. Corros. Sci. 52, 1194–1204 (2010).  https://doi.org/10.1016/j.corsci.2009.12.035 Google Scholar
  7. 7.
    Khaled, K.F.: Electrochemical behavior of nickel in nitric acid and its corrosion inhibition using some thiosemicarbazone derivatives. Electrochim. Acta 55, 5375–5383 (2010).  https://doi.org/10.1016/j.electacta.2010.04.079 Google Scholar
  8. 8.
    Khaled, K.F.: Studies of the corrosion inhibition of copper in sodium chloride solutions using chemical and electrochemical measurements. Mater. Chem. Phys. 125, 427–433 (2011).  https://doi.org/10.1016/j.matchemphys.2010.037 Google Scholar
  9. 9.
    Al-Mobarak, N.A.; Khaled, K.F.; Hamed, M.N.H.; Abdel-Azim, K.M.: Employing electrochemical frequency modulation for studying corrosion and corrosion inhibition of copper in sodium chloride solutions. Arab. J. Chem. 4, 185–193 (2011).  https://doi.org/10.1016/j.arabjc.2010.06.036 Google Scholar
  10. 10.
    Khaled, K.F.: Ambiguities about the copper corrosion inhibition in nitric acid solutions. Adv. Mater. Corros. 1, 85–87 (2012)Google Scholar
  11. 11.
    Zhang, X.; Odnevall Wallinder, I.; Leygraf, C.: Mechanistic studies of corrosion product flaking on copper and copper-based alloys in marine environments. Corros. Sci. 85, 15–25 (2014).  https://doi.org/10.1016/j.corsci.2014.03.028 Google Scholar
  12. 12.
    Winkler, D.A.; Breedon, M.; Hughes, A.E.; Burden, F.R.; Barnard, A.S.; Harvey, T.G.; Cole, I.: Towards chromate-free corrosion inhibitors: structure–property models for organic alternatives. Green Chem. 16, 3349–3357 (2014).  https://doi.org/10.1039/c3gc42540a Google Scholar
  13. 13.
    Zhang, K.; Xu, B.; Yang, W.; Yin, X.; Liu, Y.; Chen, Y.: Halogen-substituted imidazoline derivatives as corrosion inhibitors for mild steel in hydrochloric acid solution. Corros. Sci. 90, 284–295 (2015).  https://doi.org/10.1016/j.corsci.2014.10.032 Google Scholar
  14. 14.
    Qiang, Y.; Zhang, S.; Xu, S.; Guo, L.; Chen, N.; Obot, I.B.: Effective protection for copper corrosion by two thiazole derivatives in neutral chloride media: experimental and computational study. Int. J. Electrochem. Sci. 11, 3147–3163 (2016).  https://doi.org/10.20964/110403147 Google Scholar
  15. 15.
    Obot, I.B.; Ankah, N.K.; Sorour, A.; Gasem, Z.M.; Haruna, K.: 8-Hydroxyquinoline as an alternative green and sustainable acidizing oilfield corrosion inhibitor. Sustain. Mater. Technol. 14, 1–10 (2017).  https://doi.org/10.1016/j.susmat.2017.09.001 Google Scholar
  16. 16.
    Khaled, K.F.: Experimental and atomistic simulation studies of corrosion inhibition of copper by a new benzotriazole derivative in acid medium. Electrochim. Acta 54, 4345–4352 (2009).  https://doi.org/10.1016/j.electacta.2009.03.002 Google Scholar
  17. 17.
    Kumar, S.; Vashisht, H.; Olasunkanmi, L.O.; Bahadur, I.; Verma, H.; Singh, G.; Obot, I.B.; Ebenso, E.E.: Experimental and theoretical studies on inhibition of mild steel corrosion by some synthesized polyurethane tri-block co-polymers. Sci. Rep. 6, 30937 (2016).  https://doi.org/10.1038/srep30937 Google Scholar
  18. 18.
    Khaled, K.F.; El-Maghraby, A.: Experimental, Monte Carlo and molecular dynamics simulations to investigate corrosion inhibition of mild steel in hydrochloric acid solutions. Arab. J. Chem. 7, 319–326 (2014).  https://doi.org/10.1016/j.arabjc.2010.11.005 Google Scholar
  19. 19.
    Sherif, E.S.M.; Erasmus, R.M.; Comins, J.D.: Inhibition of copper corrosion in acidic chloride pickling solutions by 5-(3-aminophenyl)-tetrazole as a corrosion inhibitor. Corros. Sci. 50, 3439–3445 (2008).  https://doi.org/10.1016/j.corsci.2008.10.002 Google Scholar
  20. 20.
    Khaled, K.F.; Amin, M.A.: Dry and wet lab studies for some benzotriazole derivatives as possible corrosion inhibitors for copper in 1.0 M HNO\(_3\). Corros. Sci. 51, 2098–2106 (2009).  https://doi.org/10.1016/j.corsci.2009.05.038 Google Scholar
  21. 21.
    Khaled, K.F.; Amin, Ma; Al-Mobarak, Na: On the corrosion inhibition and adsorption behaviour of some benzotriazole derivatives during copper corrosion in nitric acid solutions: a combined experimental and theoretical study. J. Appl. Electrochem. 40, 601–613 (2009).  https://doi.org/10.1007/s10800-009-0035-8 Google Scholar
  22. 22.
    Al-mobarak, N.A.; Khaled, K.F.; Elhabib, O.A.; Abdel-azim, K.M.: Electrochemical investigation of corrosion and corrosion inhibition of copper in NaCl solutions. J. Mater. Environ. Sci. 1, 9–19 (2010)Google Scholar
  23. 23.
    Amin, M.A.; Khaled, K.F.; Mohsen, Q.; Arida, H.A.: A study of the inhibition of iron corrosion in HCl solutions by some amino acids. Corros. Sci. 52, 1684–1695 (2010).  https://doi.org/10.1016/j.corsci.2010.01.019 Google Scholar
  24. 24.
    Taylor, C.D.: Modeling corrosion, atom by atom. Electrochem. Soc. Interface 23, 59–64 (2014)Google Scholar
  25. 25.
    Leach, A.R.: Molecular Modelling. Principles and Applications. Pearson Education, Harlow (2001)Google Scholar
  26. 26.
    Al-Mobarak, N.A.; Khaled, K.F.; Hamed, M.N.H.; Abdel-Azim, K.M.; Abdelshafi, N.S.: Corrosion inhibition of copper in chloride media by 2-mercapto-4-(p-methoxyphenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile: electrochemical and theoretical study. Arab. J. Chem. 3, 233–242 (2010).  https://doi.org/10.1016/j.arabjc.2010.06.007 Google Scholar
  27. 27.
    Liu, J.; Yu, W.; Zhang, J.; Hu, S.; You, L.; Qiao, G.: Molecular modeling study on inhibition performance of imidazolines for mild steel in CO\(_2\) corrosion. Appl. Surf. Sci. 256, 4729–4733 (2010).  https://doi.org/10.1016/j.apsusc.2010.02.082 Google Scholar
  28. 28.
    Khaled, K.F.: Experimental and molecular dynamics study on the inhibition performance of some nitrogen containing compounds for iron corrosion. Mater. Chem. Phys. 124, 760–767 (2010).  https://doi.org/10.1016/j.matchemphys.2010.07.055 Google Scholar
  29. 29.
    Khaled, K.F.: Molecular modeling and electrochemical investigations of the corrosion inhibition of nickel using some thiosemicarbazone derivatives. J. Appl. Electrochem. 41, 423–433 (2011).  https://doi.org/10.1007/s10800-010-0252-1 Google Scholar
  30. 30.
    Khaled, K.F.; Abdelshafi, N.S.; El-Maghraby, A.; Al-Mobarak, N.: Molecular level investigation of the interaction of cerium dioxide layer on steel substrate used in refrigerating systems. J. Mater. Environ. Sci. 2, 166–173 (2011).  https://doi.org/10.4161/onci.23288 Google Scholar
  31. 31.
    Khaled, K.F.; Abdel-Shafi, N.S.: Quantitative structure and activity relationship modeling study of corrosion inhibitors: genetic function approximation and molecular dynamics simulation. Int. J. Electrochem. Sci. 6, 4077–4094 (2011)Google Scholar
  32. 32.
    Khaled, K.F.: Adsorption of tryptophan on iron (111): a molecular dynamics study. J. Chem. Acta 1, 66–71 (2012)Google Scholar
  33. 33.
    Khaled, K.F.: Corrosion inhibition by L-arginine - Ce 4 + system : Monte Carlo simulation study. J. Chem. Acta. 1, 59–65 (2012)Google Scholar
  34. 34.
    Khaled, K.F.; Abdelshafi, N.S.; El-Maghraby, A.A.; Aouniti, A.; Al-Mobarak, N.; Hammouti, B.: Alanine as corrosion inhibitor for iron in acid medium: a molecular level study. Int. J. Electrochem. Sci. 7, 12706–12719 (2012)Google Scholar
  35. 35.
    Khaled, K.F.; Amin, M.A.: Computational and electrochemical investigation for corrosion inhibition of nickel in molar nitric acid by piperidines. J. Appl. Electrochem. 38, 1609–1621 (2008).  https://doi.org/10.1007/s10800-008-9604-5 Google Scholar
  36. 36.
    Khaled, K.F.: Understanding corrosion inhibition of iron by 2-thiophenecarboxylic acid methyl ester : electrochemical and computational study. Adsorpt. J. Int. Adsorpt. Soc. 7, 1027–1044 (2012)Google Scholar
  37. 37.
    Obot, I.B.; Obi-Egbedi, N.O.; Ebenso, E.E.; Afolabi, A.S.; Oguzie, E.E.: Experimental, quantum chemical calculations, and molecular dynamic simulations insight into the corrosion inhibition properties of 2-(6-methylpyridin-2-yl)oxazolo[5,4-f][1,10]phenanthroline on mild steel. Res. Chem. Intermed. 39, 1927–1948 (2013).  https://doi.org/10.1007/s11164-012-0726-3 Google Scholar
  38. 38.
    Umoren, S.A.; Obot, I.B.; Gasem, Z.M.: Adsorption and corrosion inhibition characteristics of strawberry fruit extract at steel/acids interfaces: experimental and theoretical approaches. Ionics (Kiel) 21, 1171–1186 (2015).  https://doi.org/10.1007/s11581-014-1280-3 Google Scholar
  39. 39.
    Singh, P.; Ebenso, E.E.; Olasunkanmi, L.O.; Obot, I.B.; Quraishi, M.A.: Electrochemical, theoretical, and surface morphological studies of corrosion inhibition effect of green naphthyridine derivatives on mild steel in hydrochloric acid. J. Phys. Chem. C. 120, 3408–3419 (2016).  https://doi.org/10.1021/acs.jpcc.5b11901 Google Scholar
  40. 40.
    Guo, L.; Ye, G.; Obot, I.B.; Li, X.; Shen, X.; Shi, W.; Zheng, X.: Synergistic effect of potassium iodide with L-tryptophane on the corrosion inhibition of mild steel: a combined electrochemical and theoretical study. Int. J. Electrochem. Sci. 12, 166–177 (2017).  https://doi.org/10.20964/2017.01.04 Google Scholar
  41. 41.
    Abdelahi, M.M.M.; Elmsellem, H.; Benchidmi, M.; Sebbar, N.K.; Belghiti, M.A.; Ouasif, L.El; Jilalat, A.E.; Kadmi, Y.; Essassi, E.M.: A DFT and molecular dynamics study on inhibitory action of indazole derivative on corrosion of mild steel. J. Mater. Environ. Sci. 8, 1860–1876 (2017)Google Scholar
  42. 42.
    Sikine, M.; Elmsellem, H.; Rodi, Y.K.; Kadmi, Y.; Belghiti, M.; Steli, H.; Ouzidan, Y.; Sebbar, N.K.; Essassi, E.M.; Hammouti, B.: Experimental, Monte Carlo simulation and quantum chemical analysis of 1, 5-di (prop-2-ynyl) -benzodiazepine-2, 4-dione as new corrosion inhibitor for mild steel in 1 M hydrochloric acid solution. J. Mater. Environ. Sci. 8, 116–133 (2017)Google Scholar
  43. 43.
    Xia, S.; Qiu, M.; Yu, L.; Liu, F.; Zhao, H.: Molecular dynamics and density functional theory study on relationship between structure of imidazoline derivatives and inhibition performance. Corros. Sci. 50, 2021–2029 (2008).  https://doi.org/10.1016/j.corsci.2008.04.021 Google Scholar
  44. 44.
    Khaled, K.F.: Molecular simulation, quantum chemical calculations and electrochemical studies for inhibition of mild steel by triazoles. Electrochim. Acta 53, 3484–3492 (2008).  https://doi.org/10.1016/j.electacta.2007.12.030 Google Scholar
  45. 45.
    Khaled, K.F.; Amin, M.A.: Electrochemical and molecular dynamics simulation studies on the corrosion inhibition of aluminum in molar hydrochloric acid using some imidazole derivatives. J. Appl. Electrochem. 39, 2553–2568 (2009).  https://doi.org/10.1007/s10800-009-9951-x Google Scholar
  46. 46.
    Khaled, K.F.: Monte Carlo simulations of corrosion inhibition of mild steel in 0.5 M sulphuric acid by some green corrosion inhibitors. J. Solid State Electrochem. 13, 1743–1756 (2009).  https://doi.org/10.1007/s10008-009-0845-y Google Scholar
  47. 47.
    Khaled, K.F.; Amin, M.A.: Corrosion monitoring of mild steel in sulphuric acid solutions in presence of some thiazole derivatives—molecular dynamics, chemical and electrochemical studies. Corros. Sci. 51, 1964–1975 (2009).  https://doi.org/10.1016/j.corsci.2009.05.023 Google Scholar
  48. 48.
    Khaled, K.F.; Fadl-Allah, S.A.; Hammouti, B.: Some benzotriazole derivatives as corrosion inhibitors for copper in acidic medium: experimental and quantum chemical molecular dynamics approach. Mater. Chem. Phys. 117, 148–155 (2009).  https://doi.org/10.1016/j.matchemphys.2009.05.043 Google Scholar
  49. 49.
    Khaled, K.F.: Adsorption and inhibitive properties of a new synthesized guanidine derivative on corrosion of copper in 0.5 M H\(_2\)SO\(_4\). Appl. Surf. Sci. 255, 1811–1818 (2008).  https://doi.org/10.1016/j.apsusc.2008.06.030 Google Scholar
  50. 50.
    Khaled, K.F.: Guanidine derivative as a new corrosion inhibitor for copper in 3% NaCl solution. Mater. Chem. Phys. 112, 104–111 (2008).  https://doi.org/10.1016/j.matchemphys.2008.05.052 Google Scholar
  51. 51.
    Khaled, K.F.: Application of electrochemical frequency modulation for monitoring corrosion and corrosion inhibition of iron by some indole derivatives in molar hydrochloric acid. Mater. Chem. Phys. 112, 290–300 (2008).  https://doi.org/10.1016/j.matchemphys.2008.05.056 Google Scholar
  52. 52.
    Khaled, K.F.: Corrosion control of copper in nitric acid solutions using some amino acids—a combined experimental and theoretical study. Corros. Sci. 52, 3225–3234 (2010).  https://doi.org/10.1016/j.corsci.2010.05.039 Google Scholar
  53. 53.
    Zhang, J.; Liu, J.; Yu, W.; Yan, Y.; You, L.; Liu, L.: Molecular modeling of the inhibition mechanism of 1-(2-aminoethyl)-2-alkyl-imidazoline. Corros. Sci. 52, 2059–2065 (2010).  https://doi.org/10.1016/j.corsci.2010.02.018 Google Scholar
  54. 54.
    Khaled, K.F.: Experimental, density function theory calculations and molecular dynamics simulations to investigate the adsorption of some thiourea derivatives on iron surface in nitric acid solutions. Appl. Surf. Sci. 256, 6753–6763 (2010).  https://doi.org/10.1016/j.apsusc.2010.04.085 Google Scholar
  55. 55.
    Khaled, K.F.: Electrochemical investigation and modeling of corrosion inhibition of aluminum in molar nitric acid using some sulphur-containing amines. Corros. Sci. 52, 2905–2916 (2010).  https://doi.org/10.1016/j.corsci.2010.05.001 Google Scholar
  56. 56.
    Zhang, J.; Yu, W.; Yu, L.; Yan, Y.; Qiao, G.; Hu, S.; Ti, Y.: Molecular dynamics simulation of corrosive particle diffusion in benzimidazole inhibitor films. Corros. Sci. 53, 1331–1336 (2011).  https://doi.org/10.1016/j.corsci.2010.12.027 Google Scholar
  57. 57.
    Zhang, J.; Qiao, G.; Hu, S.; Yan, Y.; Ren, Z.; Yu, L.: Theoretical evaluation of corrosion inhibition performance of imidazoline compounds with different hydrophilic groups. Corros. Sci. 53, 147–152 (2011).  https://doi.org/10.1016/j.corsci.2010.09.007 Google Scholar
  58. 58.
    Khaled, K.F.; Hamed, M.N.H.; Abdel-Azim, K.M.; Abdelshafi, N.S.: Inhibition of copper corrosion in 3.5% NaCl solutions by a new pyrimidine derivative: electrochemical and computer simulation techniques. J. Solid State Electrochem. 15, 663–673 (2011).  https://doi.org/10.1007/s10008-010-1110-0 Google Scholar
  59. 59.
    Khaled, K.F.: Experimental and computational investigations of corrosion and corrosion inhibition of iron in acid solutions. J. Appl. Electrochem. 41, 277–287 (2011).  https://doi.org/10.1007/s10800-010-0235-2 Google Scholar
  60. 60.
    Shi, W.Y.; Ding, C.; Yan, J.L.; Han, X.Y.; Lv, Z.M.; Lei, W.; Xia, M.Z.; Wang, F.Y.: Molecular dynamics simulation for interaction of PESA and acrylic copolymers with calcite crystal surfaces. Desalination 291, 8–14 (2012).  https://doi.org/10.1016/j.desal.2012.01.019 Google Scholar
  61. 61.
    Musa, A.Y.; Jalgham, R.T.T.; Mohamad, A.B.: Molecular dynamic and quantum chemical calculations for phthalazine derivatives as corrosion inhibitors of mild steel in 1M HCl. Corros. Sci. 56, 176–183 (2012).  https://doi.org/10.1016/j.corsci.2011.12.005 Google Scholar
  62. 62.
    Kabanda, M.M.; Obot, I.B.; Ebenso, E.E.: Computational study of some amino acid derivatives as potential corrosion inhibitors for different metal surfaces and in different media. Int. J. Electrochem. Sci. 8, 10839–10850 (2013)Google Scholar
  63. 63.
    Obot, I.B.; Ebenso, E.E.; Kabanda, M.M.: Metronidazole as environmentally safe corrosion inhibitor for mild steel in 0.5 M HCl: experimental and theoretical investigation. J. Environ. Chem. Eng. 1, 431–439 (2013).  https://doi.org/10.1016/j.jece.2013.06.007 Google Scholar
  64. 64.
    Shi, W.; Xia, M.; Lei, W.; Wang, F.: Molecular dynamics study of polyether polyamino methylene phosphonates as an inhibitor of anhydrite crystal. Desalination 322, 137–143 (2013).  https://doi.org/10.1016/j.desal.2013.05.013 Google Scholar
  65. 65.
    Khaled, K.F.; El-Sherik, A.M.: Using molecular dynamics simulations and genetic function approximation to model corrosion inhibition of iron in chloride solutions. Int. J. Electrochem. Sci. 8, 10022–10043 (2013)Google Scholar
  66. 66.
    Guo L, Zhang ST, Li WP, Hu G, Li X (2013) Experimental and computational studies of two antibacterial drugs as corrosion inhibitors for mild steel in acid media. Mater. Corros.  https://doi.org/10.1002/maco.201307346
  67. 67.
    Yan, Y.; Wang, X.; Zhang, Y.; Wang, P.; Cao, X.; Zhang, J.: Molecular dynamics simulation of corrosive species diffusion in imidazoline inhibitor films with different alkyl chain length. Corros. Sci. 73, 123–129 (2013).  https://doi.org/10.1016/j.corsci.2013.03.031 Google Scholar
  68. 68.
    Khaled, K.F.; Atta, A.A.; Abdel-Shafi, N.S.: A structure/function study of polyamidoamine dendrimer as a steel corrosion inhibitor. J. Mater. Environ. Sci. 5, 831–840 (2014)Google Scholar
  69. 69.
    Obot, I.B.; Gasem, Z.M.: Theoretical evaluation of corrosion inhibition performance of some pyrazine derivatives. Corros. Sci. 83, 359–366 (2014).  https://doi.org/10.1016/j.corsci.2014.03.008 Google Scholar
  70. 70.
    Hmamou, D.B.; Zarrouk, A.; Salghi, R.; Zarrok, H.; Ebenso, E.E.; Hammouti, B.; Kabanda, M.M.; Benchat, N.; Benali, O.: Experimental and theoretical studies of the adsorption and corrosion inhibition of 6-phenylpyridazine-3(2H)-thione on Carbon Steel in 2.0 M H\(<\)inf\(>\)3\(<\)/inf\(>\)PO\(<\)inf\(>\)4\(<\)/inf\(>\) solution. Int. J. Electrochem. Sci. 9, 120–138 (2014)Google Scholar
  71. 71.
    Guo, L.; Dong, W.; Zhang, S.: Theoretical challenges in understanding the inhibition mechanism of copper corrosion in acid media in the presence of three triazole derivatives. RSC Adv. 4, 41956–41967 (2014).  https://doi.org/10.1039/C4RA04931D Google Scholar
  72. 72.
    Cao, Z.; Tang, Y.; Cang, H.; Xu, J.; Lu, G.; Jing, W.: Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part II: theoretical studies. Corros. Sci. 83, 292–298 (2014).  https://doi.org/10.1016/j.corsci.2014.02.025 Google Scholar
  73. 73.
    Hmamou, D.Ben; Salghi, R.; Zarrouk, A.; Zarrok, H.; Touzani, R.; Hammouti, B.; El Assyry, A.: Investigation of corrosion inhibition of carbon steel in 0.5M H\(_2\)SO\(_4\) by new bipyrazole derivative using experimental and theoretical approaches. J. Environ. Chem. Eng. 3, 2031–2041 (2015).  https://doi.org/10.1016/j.jece.2015.03.018 Google Scholar
  74. 74.
    Wazzan, N.A.; Obot, I.B.; Kaya, S.: Theoretical modeling and molecular level insights into the corrosion inhibition activity of 2-amino-1,3,4-thiadiazole and its 5-alkyl derivatives. J. Mol. Liq. 221, 579–602 (2016).  https://doi.org/10.1016/j.molliq.2016.06.011 Google Scholar
  75. 75.
    Qiang, Y.; Guo, L.; Zhang, S.; Li, W.; Yu, S.; Tan, J.: Synergistic effect of tartaric acid with 2,6-diaminopyridine on the corrosion inhibition of mild steel in 0.5 M HCl. Sci. Rep. 6, 33305 (2016).  https://doi.org/10.1038/srep33305 Google Scholar
  76. 76.
    Khaled, K.F.; El-Sherik, A.M.: Validation of a predictive model for corrosion inhibition of API 5L X60 steel in chloride solution. Int. J. Electrochem. Sci. 11, 2377–2391 (2016)Google Scholar
  77. 77.
    Verma, C.; Olasunkanmi, L.O.; Obot, I.B.; Ebenso, E.E.; Quraishi, M.A.: 5-Arylpyrimido-[4,5-b]quinoline-diones as new and sustainable corrosion inhibitors for mild steel in 1 M HCl: a combined experimental and theoretical approach. RSC Adv. 6, 15639–15654 (2016).  https://doi.org/10.1039/c5ra27417f Google Scholar
  78. 78.
    Kaya, S.; Kaya, C.; Guo, L.; Kandemirli, F.; Tüzün, B.; Ugurlu, İ.; Madkour, L.H.; Saraçoğlu, M.: Quantum chemical and molecular dynamics simulation studies on inhibition performances of some thiazole and thiadiazole derivatives against corrosion of iron. J. Mol. Liq. 219, 497–504 (2016).  https://doi.org/10.1016/j.molliq.2016.03.042 Google Scholar
  79. 79.
    Kaya, S.; Tüzün, B.; Kaya, C.; Obot, I.B.: Determination of corrosion inhibition effects of amino acids: quantum chemical and molecular dynamic simulation study. J. Taiwan Inst. Chem. Eng. 58, 528–535 (2016).  https://doi.org/10.1016/j.jtice.2015.06.009 Google Scholar
  80. 80.
    Verma, C.; Olasunkanmi, L.O.; Ebenso, E.E.; Quraishi, M.A.; Obot, I.B.: Adsorption behavior of glucosamine-based, pyrimidine-fused heterocycles as green corrosion inhibitors for mild steel: experimental and theoretical studies. J. Phys. Chem. C. 120, 11598–11611 (2016).  https://doi.org/10.1021/acs.jpcc.6b04429 Google Scholar
  81. 81.
    Guo, L.; Kaya, S.; Obot, I.B.; Zheng, X.; Qiang, Y.: Toward understanding the anticorrosive mechanism of some thiourea derivatives for carbon steel corrosion: a combined DFT and molecular dynamics investigation. J. Colloid Interface Sci. 506, 478–485 (2017).  https://doi.org/10.1016/j.jcis.2017.07.082 Google Scholar
  82. 82.
    Mashuga, M.E.; Olasunkanmi, L.O.; Ebenso, E.E.: Experimental and theoretical investigation of the inhibitory effect of new pyridazine derivatives for the corrosion of mild steel in 1 M HCl. J. Mol. Struct. 1136, 127–139 (2017).  https://doi.org/10.1016/j.molstruc.2017.02.002 Google Scholar
  83. 83.
    Qiang, Y.; Zhang, S.; Guo, L.; Xu, S.; Feng, L.; Obot, I.B.; Chen, S.: Sodium dodecyl benzene sulfonate as a sustainable inhibitor for zinc corrosion in 26% NH4Cl solution. J. Clean. Prod. 152, 17–25 (2017).  https://doi.org/10.1016/j.jclepro.2017.03.104 Google Scholar
  84. 84.
    Nwankwo, H.U.; Olasunkanmi, L.O.; Ebenso, E.E.: Experimental, quantum chemical and molecular dynamic simulations studies on the corrosion inhibition of mild steel by some carbazole derivatives. Sci. Rep. 7, 2436 (2017).  https://doi.org/10.1038/s41598-017-02446-0 Google Scholar
  85. 85.
    Guo, L.; Zhu, S.; Zhang, S.; He, Q.; Li, W.: Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium. Corros. Sci. 87, 366–375 (2014).  https://doi.org/10.1016/j.corsci.2014.06.040 Google Scholar
  86. 86.
    Sasikumar, Y.; Adekunle, A.S.; Olasunkanmi, L.O.; Bahadur, I.; Baskar, R.; Kabanda, M.M.; Obot, I.B.; Ebenso, E.E.: Experimental, quantum chemical and Monte Carlo simulation studies on the corrosion inhibition of some alkyl imidazolium ionic liquids containing tetrafluoroborate anion on mild steel in acidic medium. J. Mol. Liq. 211, 105–118 (2015).  https://doi.org/10.1016/j.molliq.2015.06.052 Google Scholar
  87. 87.
    Singh, A.; Lin, Y.; Quraishi, M.A.; Olasunkanmi, L.O.; Fayemi, O.E.; Sasikumar, Y.; Ramaganthan, B.; Bahadur, I.; Obot, I.B.; Adekunle, A.S.; Kabanda, M.M.; Ebenso, E.E.: Porphyrins as corrosion inhibitors for N80 steel in 3.5% NaCl solution: electrochemical, quantum chemical, QSAR and Monte Carlo simulations studies. Molecules 20, 15122–15146 (2015).  https://doi.org/10.3390/molecules200815122 Google Scholar
  88. 88.
    Ramaganthan, B.; Gopiraman, M.; Olasunkanmi, L.O.; Kabanda, M.M.; Yesudass, S.; Bahadur, I.; Adekunle, A.S.; Obot, I.B.; Ebenso, E.E.: Synthesized photo-cross-linking chalcones as novel corrosion inhibitors for mild steel in acidic medium: experimental, quantum chemical and Monte Carlo simulation studies. RSC Adv. 5, 76675–76688 (2015).  https://doi.org/10.1039/c5ra12097g Google Scholar
  89. 89.
    Olasunkanmi, L.; Obot, I.B.; Kabanda, M.M.; Ebenso, E.E.: Some quinoxalin-6-yl derivatives as corrosion inhibitors for mild steel in hydrochloric acid: experimental and theoretical studies. J. Phys. Chem. C. 119, 16004–16019 (2015).  https://doi.org/10.1021/acs.jpcc.5b03285 Google Scholar
  90. 90.
    Yesudass, S.; Olasunkanmi, L.O.; Bahadur, I.; Kabanda, M.M.; Obot, I.B.; Ebenso, E.E.: Experimental and theoretical studies on some selected ionic liquids with different cations/anions as corrosion inhibitors for mild steel in acidic medium. J. Taiwan Inst. Chem. Eng. 64, 252–268 (2016).  https://doi.org/10.1016/j.jtice.2016.04.006 Google Scholar
  91. 91.
    Obot, I.B.; Kaya, S.; Kaya, C.; Tüzün, B.: Theoretical evaluation of triazine derivatives as steel corrosion inhibitors: DFT and Monte Carlo simulation approaches. Res. Chem. Intermed. 42, 4963–4983 (2016).  https://doi.org/10.1007/s11164-015-2339-0 Google Scholar
  92. 92.
    Belghiti, M.E.; Karzazi, Y.; Dafali, A.; Obot, I.B.; Ebenso, E.E.; Emran, K.M.; Bahadur, I.; Hammouti, B.; Bentiss, F.: Anti-corrosive properties of 4-amino-3,5-bis(disubstituted)-1,2,4-triazole derivatives on mild steel corrosion in 2 M H\(_3\)PO\(_4\) solution: experimental and theoretical studies. J. Mol. Liq. 216, 874–886 (2016).  https://doi.org/10.1016/j.molliq.2015.12.093 Google Scholar
  93. 93.
    Obot, I.B.; Kaya, S.; Kaya, C.; Tuzun, B.: Density Functional Theory (DFT) modeling and Monte Carlo simulation assessment of inhibition performance of some carbohydrazide Schiff bases for steel corrosion. Phys. E Low Dimens. Syst. Nanostruct. 80, 82–90 (2016).  https://doi.org/10.1016/j.physe.2016.01.024 Google Scholar
  94. 94.
    Awad, M.K.; Mustafa, M.R.; Abouelnga, M.M.: Quantum chemical studies and atomistic simulations of some inhibitors for the corrosion of al surface. Prot. Met. Phys. Chem. Surfaces 52, 156–168 (2016).  https://doi.org/10.1134/S2070205116010032 Google Scholar
  95. 95.
    Karzazi, Y.; Belghiti, M.E.; El-Hajjaji, F.; Boudra, S.; Hammouti, B.: Density functional theory modeling and Monte Carlo simulation assessment of inhibition performance of two quinoxaline derivatives for steel corrosion. J. Mater. Environ. Sci. 7, 4011–4023 (2016)Google Scholar
  96. 96.
    Krim, O.; Jodeh, S.; Messali, M.; Hammouti, B.; Elidrissi, A.; Khaled, K.; Salghig, R.; Lgazg, H.A.: Synthesis, characterization and corrosion protection properties of imidazole derivatives on mild steel in 1. 0 M HCl. Port. Electrochim. Acta 34, 213–229 (2016).  https://doi.org/10.4152/pea.201603213 Google Scholar
  97. 97.
    Khaled, K.F.; Abdel-Shafi, N.S.; Al-Mubarak, N.A.; Alonazi, M.S.: L-arginine as corrosion and scale inhibitor of steel in synthetic reservoir water. Int. J. Electrochem. Sci. 11, 2433–2446 (2016)Google Scholar
  98. 98.
    Haque, J.; Ansari, K.R.; Srivastava, V.; Quraishi, M.A.; Obot, I.B.: Pyrimidine derivatives as novel acidizing corrosion inhibitors for N80 steel useful for petroleum industry: a combined experimental and theoretical approach. J. Ind. Eng. Chem. 49, 176–188 (2017).  https://doi.org/10.1016/j.jiec.2017.01.025 Google Scholar
  99. 99.
    Tourabi, M.; Sahibed-dine, A.; Zarrouk, A.; Obot, I.B.; Hammouti, B.; Bentiss, F.; Nahlé, A.: 3,5-Diaryl-4-amino-1,2,4-triazole derivatives as effective corrosion inhibitors for mild steel in hydrochloric acid solution: correlation between anti-corrosion activity and chemical structure. Prot. Met. Phys. Chem. Surfaces 53, 548–559 (2017).  https://doi.org/10.1134/S2070205117030236 Google Scholar
  100. 100.
    Cuendet, M.: Molecular Dynamics Simulation. European Molecular Biological Laboratory, pp. 1–67 (2008)Google Scholar
  101. 101.
    Dorsett, H., White, A.: Overview of molecular modelling and ab initio molecular orbital methods suitable for use with energetic materials. Department of Defense, Weapons Systems Division, Aeronautical and Maritime Research Laboratory, DSTO-GD-0253, Salisbury, South Australia (2000)Google Scholar
  102. 102.
    Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049–1070 (1926).  https://doi.org/10.1103/PhysRev.28.1049 Google Scholar
  103. 103.
    Levine, I.N.: Quantum Chemistry. Prentice Hall, Upper Saddle River (2000)Google Scholar
  104. 104.
    Hartree, D.R.: The wave mechanics of an atom with a non-coulomb central field. Part II. Some results and discussion. Math. Proc. Camb. Philos. Soc. 24, 89–110 (1928)zbMATHGoogle Scholar
  105. 105.
    Fock, V.: A method for solving the quantum mechanical multi-body problem. Z. Phys. 61, 126–148 (1930).  https://doi.org/10.1007/BF01340294 Google Scholar
  106. 106.
    Adamo, C.; Barone, V.: Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).  https://doi.org/10.1063/1.478522 Google Scholar
  107. 107.
    Al-saadi, A.A.H.: Spectroscopic and ab initio studies on the conformations and vibrational spectra of selected cyclic and bicyclic molecules spectroscopic and ab initio studies on the conformations and vibrational spectra of selected cyclic and bicyclic molecules (2006)Google Scholar
  108. 108.
    Møller, C.; Plesset, M.S.: Note on an approximation treatment for many-electron systems. Phys. Rev. 46, 618–622 (1934).  https://doi.org/10.1103/PhysRev.46.618 zbMATHGoogle Scholar
  109. 109.
    Hohenberg, P.; Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).  https://doi.org/10.1103/PhysRev.136.B864 MathSciNetGoogle Scholar
  110. 110.
    Withnall, R.; Chowdhry, B.Z.; Bell, S.; Dines, T.J.: Computational chemistry using modern electronic structure methods. Chem. Educ. 84, 1364 (2007).  https://doi.org/10.1021/ed084p1364 Google Scholar
  111. 111.
    Levine, I.N.: Quantum Chemistry. Pearson, New York (2000)Google Scholar
  112. 112.
    Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).  https://doi.org/10.1063/1.464913 Google Scholar
  113. 113.
    Lee, C.; Yang, W.; Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789 (1988).  https://doi.org/10.1103/PhysRevB.37.785 Google Scholar
  114. 114.
    Burke, K.; Perdew, J.P.; Wang, Y.: Derivation of a generalized gradient approximation: the PW91 density functional. In: Dobson J.F.; Vignale G.; Das M.P. (eds.) Electronic Density Functional Theory, pp. 81–111. Springer US, Boston, MA (1998)Google Scholar
  115. 115.
    Perdew, J.P.; Burke, K.; Wang, Y.: Erratum: generalized gradient approximation for the exchange-correlation hole of a many-electron system [Phys. Rev. B 54, 16 533 (1996)]. Phys. Rev. B. 57, 14999–14999 (1998).  https://doi.org/10.1103/PhysRevB.57.14999 Google Scholar
  116. 116.
    Perdew, J.; Chevary, J.; Vosko, S.; Jackson, K.; Pederson, M.; Singh, D.; Fiolhais, C.: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B. 46, 6671–6687 (1992)Google Scholar
  117. 117.
    Foresman, J.B.: Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems By David Young (Cytoclonal Pharmaceutics Inc.). Wiley, New York. 2001. xxvi + 382 pp. \$69.95. ISBN: 0-471-33368-9 (2001)Google Scholar
  118. 118.
    John, Sam; Kuruvilla, Mathew; J., A.: Adsorption and inhibition effect of methyl carbamate on copper metal in 1N HNO\(_3\): an experimental and theoretical study. RSC Adv. 3, 8929–8938 (2013).  https://doi.org/10.1039/c4ra02436b Google Scholar
  119. 119.
    Verma, C.; Olasunkanmi, L.O.; Obot, I.B.; Ebenso, E.E.; Quraishi, M.A.: 2,4-Diamino-5-(phenylthio)-5H-chromeno [2,3-b] pyridine-3-carbonitriles as green and effective corrosion inhibitors: gravimetric, electrochemical, surface morphology and theoretical studies. RSC Adv. 6, 53933–53948 (2016).  https://doi.org/10.1039/C6RA04900A Google Scholar
  120. 120.
    Verma, C.; Quraishi, M.A.; Ebenso, E.E.; Obot, I.B.; El Assyry, A.: 3-Amino alkylated indoles as corrosion inhibitors for mild steel in 1M HCl: experimental and theoretical studies. J. Mol. Liq. 219, 647–660 (2016).  https://doi.org/10.1016/j.molliq.2016.04.024 Google Scholar
  121. 121.
    Olasunkanmi, L.O.; Obot, I.B.; Ebenso, E.E.: Adsorption and corrosion inhibition properties of N-n-[1-R-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-3-yl]phenylmethanesulfonamides on mild steel in 1 M HCl: experimental and theoretical studies. RSC Adv. 6, 86782–86797 (2016).  https://doi.org/10.1039/C6RA11373G Google Scholar
  122. 122.
    Collett, C.T.; Robson, C.D.: Handbook of Computational Chemistry Research. Oxford University Press, Oxford (2010)Google Scholar
  123. 123.
    Cook, D.B.: Handbook of Computational [Quantum] Chemistry, vol. xxiii. Oxford Sci. Publ., Oxford (1998).  https://doi.org/10.1021/ci0003449 Google Scholar
  124. 124.
    Herman, M.F.: The development of semiclassical dynamical methods and their application to vibrational relaxation in condensed-phase systems. Int. J. Quantum Chem. 70, 897–907 (1998). https://doi.org/10.1002/(SICI)1097-461X(1998)70:4/5\(<\)897::AID-QUA35\(>\)3.0.CO;2-WGoogle Scholar
  125. 125.
    De Paz, J.-L.G.; Ciller, J.: On the use of AMl and PM3 methods on energetic compounds. Propellants Explos. Pyrotech. 18, 33–40 (1993).  https://doi.org/10.1002/prep.19930180107 Google Scholar
  126. 126.
    Akutsu, Y.; Tahara, S.-Y.; Tamura, M.; Yoshida, T.: Calculations of heats of formation for nitro compounds by semi-empirical mo methods and molecular mechanics. J. Energ. Mater. 9, 161–171 (1991).  https://doi.org/10.1080/07370659108019862 Google Scholar
  127. 127.
    Coleman, W.F.; Arumainayagam, C.R.: HyperChem 5 (by Hypercube, Inc.). J. Chem. Educ. 75, 416 (1998).  https://doi.org/10.1021/ed075p416 Google Scholar
  128. 128.
    Štich, I.: Correlations in the motion of atoms in liquid silicon. Phys. Rev. A. 44, 1401–1404 (1991).  https://doi.org/10.1103/PhysRevA.44.1401 Google Scholar
  129. 129.
    McCammon, J.A.; Gelin, B.R.; Karplus, M.: Dynamics of folded proteins. Nature 267, 585–590 (1977)Google Scholar
  130. 130.
    Stillinger, F.H.; Rahman, A.: Improved simulation of liquid water by molecular dynamics. J. Chem. Phys. 60(4), 1545–1557 (1974)Google Scholar
  131. 131.
    Alder, B.J.; Wainwright, T.E.: Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208–1209 (1957).  https://doi.org/10.1063/1.1743957 Google Scholar
  132. 132.
    Ojeda, P.; Garcia, M.E.; Londoño, A.; Chen, N.-Y.: Monte Carlo simulations of proteins in cages: influence of confinement on the stability of intermediate states. Biophys. J. 96, 1076–1082 (2009).  https://doi.org/10.1529/biophysj.107.125369 Google Scholar
  133. 133.
    Milik, M.; Skolnick, J.: Insertion of peptide chains into lipid membranes: an off-lattice Monte Carlo dynamics model. Proteins Struct. Funct. Genet. 15, 10–25 (1993)Google Scholar
  134. 134.
    Sadus, R.J.: Ensembles and Monte Carlo Simulation. Centre for molecular simulation swinburne university of technology, Hawthorn Victoria 3122, AustraliaGoogle Scholar
  135. 135.
    Theodorou, D.N.: Diffusion in Polymers. Marcel Dekker, New York (1996)Google Scholar
  136. 136.
    Alder, B.J.; Wainwright, T.E.: Studies in molecular dynamics. I. Gen. Method. J. Chem. Phys. 31, 459–466 (1959).  https://doi.org/10.1063/1.1730376 MathSciNetGoogle Scholar
  137. 137.
    Rai, B. (ed.): Molecular Modeling for the Design of Novel Performance Chemicals and Materials. CRC Press, Taylor & Francis Group, New York (2012)Google Scholar
  138. 138.
    Peters, G.H.J.: Computer simulations: a tool for investigating the function of complex biological macromolecules. In: Svendsen, A. (ed.) Enzyme Functionality-Design, Engineering, and Screening (2004)Google Scholar
  139. 139.
    Carson, M.; Hermans, J.: The Molecular dynamics workshop laboratory. In: Hermans, J. (ed.) Molecular Dynamics and Protein Structure, University of North Carolina, Chapel Hill (1985)Google Scholar
  140. 140.
    Maiti, J.-R.; Lalitha, H.; Amitesh, S.: Molecular Modeling Techniques in Material Sciences. Taylor & Francis, Milton Park (2005)Google Scholar
  141. 141.
    Allen, M.: Introduction to molecular dynamics simulation. Comput. Soft Matter Synth. Polym. Proteins 23, 1–28 (2004).  https://doi.org/10.1016/j.cplett.2006.06.020 MathSciNetGoogle Scholar
  142. 142.
    Taylor, C.D.; Marcus, P. (eds.): Molecular Modeling of Corrosion Processes. Wiley, Hoboken (2015)Google Scholar
  143. 143.
    Metropolis N.; Ulam S. : The Monte Carlo method. J. Am. Stat. Assoc. 44, 335–341 (1949).  https://doi.org/10.1080/01621459.1949.10483310
  144. 144.
    Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)Google Scholar
  145. 145.
    Frenkel, D.; Smit, B.: Understanding molecular simulation. Academic Press, San Diego, California (2002)Google Scholar
  146. 146.
    Allen, M.P.; Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, New York (1991)zbMATHGoogle Scholar
  147. 147.
    Jensen, B.: Investigation into the impact of solid surfaces in aqueous system (2016)Google Scholar
  148. 148.
    Sun, H.; Ren, P.; Fried, J.R.: The COMPASS force field: parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 8, 229–246 (1998).  https://doi.org/10.1016/S1089-3156(98)00042-7 Google Scholar
  149. 149.
    Rappé, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard, W.A.; Skiff, W.M.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).  https://doi.org/10.1021/ja00051a040 Google Scholar
  150. 150.
    Casewit, C.J.; Colwell, K.S.; Rappe, A.K.: Application of a universal force field to main group compounds. J. Am. Chem. Soc. 114, 10046–10053 (1992).  https://doi.org/10.1021/ja00051a042 Google Scholar
  151. 151.
    Lifson, S.; Hagler, A.T.; Dauber, P.: Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 1. Carboxylic acids, amides, and the C:O.cntdot.cntdot.cntdot.H- hydrogen bonds. J. Am. Chem. Soc. 101, 5111–5121 (1979).  https://doi.org/10.1021/ja00512a001 Google Scholar
  152. 152.
    Hagler, A.T.; Lifson, S.: Energy functions for peptides and proteins. II. Amide hydrogen bond and calculation of amide crystal properties. J. Am. Chem. Soc. 96, 5327–5335 (1974).  https://doi.org/10.1021/ja00824a005 Google Scholar
  153. 153.
    Hagler, A.T.; Huler, E.; Lifson, S.: Energy functions for peptides and proteins. I. Derivation of a consistent force field including the hydrogen bond from amide crystals. J. Am. Chem. Soc. 96, 5319–5327 (1974).  https://doi.org/10.1021/ja00824a004 Google Scholar
  154. 154.
    Bulatov, V.; Vasily,; Cei, W.: Computer Simulations of Dislocations. Oxford University Press, Oxford (2006)zbMATHGoogle Scholar
  155. 155.
    Zhigilei, L.: Introduction to atomistic simulations. MSE 4270/6270, University of Virginia (2007)Google Scholar
  156. 156.
    Obot, I.B.; Umoren, S.A.; Gasem, Z.M.; Suleiman, R.; Ali, B.El: Theoretical prediction and electrochemical evaluation of vinylimidazole and allylimidazole as corrosion inhibitors for mild steel in 1M HCl. J. Ind. Eng. Chem. 21, 1328–1339 (2015).  https://doi.org/10.1016/j.jiec.2014.05.049 Google Scholar
  157. 157.
    Verma, C.B.; Ebenso, E.E.; Bahadur, I.; Obot, I.B.; Quraishi, M.A.: 5-(Phenylthio)-3H-pyrrole-4-carbonitriles as effective corrosion inhibitors for mild steel in 1 M HCl: experimental and theoretical investigation. J. Mol. Liq. 212, 209–218 (2015).  https://doi.org/10.1016/j.molliq.2015.09.009 Google Scholar
  158. 158.
    Olasunkanmi, L.O.; Obot, I.B.; Kabanda, M.M.; Ebenso, E.E.: Some quinoxalin-6-yl derivatives as corrosion inhibitors for mild steel in hydrochloric acid: experimental and theoretical studies. J. Phys. Chem. C 119, 16004–16019 (2015).  https://doi.org/10.1021/acs.jpcc.5b03285 Google Scholar
  159. 159.
    Kaya, S.; Guo, L.; Kaya, C.; Tüzün, B.; Obot, I.B.; Touir, R.; Islam, N.: Quantum chemical and molecular dynamic simulation studies for the prediction of inhibition efficiencies of some piperidine derivatives on the corrosion of iron. J. Taiwan Inst. Chem. Eng. 65, 522–529 (2016).  https://doi.org/10.1016/j.jtice.2016.05.034 Google Scholar
  160. 160.
    Guo, L.; Obot, I.B.; Zheng, X.; Shen, X.; Qiang, Y.; Kaya, S.; Kaya, C.: Theoretical insight into an empirical rule about organic corrosion inhibitors containing nitrogen, oxygen, and sulfur atoms. Appl. Surf. Sci. 406, 301–306 (2017).  https://doi.org/10.1016/j.apsusc.2017.02.134 Google Scholar
  161. 161.
    Molecular simulation/periodic boundary conditions—Wikibooks, open books for an open world. https://en.wikibooks.org/wiki/Molecular_Simulation/Periodic_Boundary_Conditions. Accessed 08 Oct 2017
  162. 162.
    Arslan, T.; Kandemirli, F.; Ebenso, E.E.; Love, I.; Alemu, H.: Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium. Corros. Sci. 51, 35–47 (2009).  https://doi.org/10.1016/j.corsci.2008.10.016 Google Scholar
  163. 163.
    Chauhan, L.R.; Gunasekaran, G.: Corrosion inhibition of mild steel by plant extract in dilute HCl medium. Corros. Sci. 49, 1143–1161 (2007).  https://doi.org/10.1016/j.corsci.2006.08.012 Google Scholar
  164. 164.
    API: Damage Mechanisms Affecting fixed Equipment in the Refining Industry RP 571, vol. 372. Am. Pet. Inst., Washington (2011)Google Scholar
  165. 165.
    Ebenso, E.E.; Kabanda, M.M.; Murulana, L.C.; Singh, A.K.; Shukla, S.K.: Electrochemical and quantum chemical investigation of some azine and thiazine dyes as potential corrosion inhibitors for mild steel in hydrochloric acid solution. Ind. Eng. Chem. Res. 51, 12940–12958 (2012).  https://doi.org/10.1021/ie300965k Google Scholar
  166. 166.
    Wang, X.; Liu, L.; Wang, P.; Li, W.; Zhang, J.; Yan, Y.: How the inhibition performance is affected by inhibitor concentration: a perspective from microscopic adsorption behavior. Ind. Eng. Chem. Res. 53, 16785–16792 (2014).  https://doi.org/10.1021/ie502790c Google Scholar
  167. 167.
    Luo, X.; Zhang, S.; Guo, L.: Investigation of a pharmaceutically active compound omeprazole as inhibitor for corrosion of mild steel in H\(_2\)SO\(_4\) solution. Int. J. Electrochem. Sci. 9, 7309–7324 (2014)Google Scholar
  168. 168.
    Khaled, K.F.; Al-Nofai, N.M.; Abdel-Shafi, N.S.: QSAR of corrosion inhibitors by genetic function approximation, neural network and molecular dynamics simulation methods. J. Mater. Environ. Sci. 7, 2121–2136 (2016)Google Scholar
  169. 169.
    Saha, S.K.; Dutta, A.ut; Ghosh, P.; Sukul, D.; Banerjee, P.: Adsorption and corrosion inhibition effect of schiff base molecules on the mild steel surface in 1 M HCL medium: a combined experimental and theoretical approach. Phys. Chem. Chem. Phys 17, 5679–5690 (2015).  https://doi.org/10.1039/c4cp05614k Google Scholar
  170. 170.
    Saha, S.K.; Banerjee, P.: A theoretical approach to understand the inhibition mechanism of steel corrosion with two aminobenzonitrile inhibitors. RSC Adv. 5, 71120–71130 (2015).  https://doi.org/10.1039/c5ra15173b Google Scholar
  171. 171.
    Messali, M.; Larouj, M.; Lgaz, H.; Rezki, N.; Al-Blewi, F.F.; Aouad, M.R.; Chaouiki, A.; Salghi, R.; Chung, I.M.: A new schiff base derivative as an effective corrosion inhibitor for mild steel in acidic media: experimental and computer simulations studies. J. Mol. Struct. 1168, 39–48 (2018).  https://doi.org/10.1016/j.molstruc.2018.05.018 Google Scholar
  172. 172.
    Saha, S.K.; Murmu, M.; Murmu, N.C.; Banerjee, P.: Evaluating electronic structure of quinazolinone and pyrimidinone molecules for its corrosion inhibition effectiveness on target specific mild steel in the acidic medium: a combined DFT and MD simulation study. J. Mol. Liq. 224, 629–638 (2016).  https://doi.org/10.1016/j.molliq.2016.09.110 Google Scholar
  173. 173.
    El-Hajjaji, F.; Messali, M.; Aljuhani, A.; Aouad, M.R.; Hammouti, B.; Belghiti, M.E.; Chauhan, D.S.; Quraishi, M.A.: Pyridazinium-based ionic liquids as novel and green corrosion inhibitors of carbon steel in acid medium: electrochemical and molecular dynamics simulation studies. J. Mol. Liq. 249, 997–1008 (2018).  https://doi.org/10.1016/j.molliq.2017.11.111 Google Scholar
  174. 174.
    Saha, S.K.; Banerjee, P.: Introduction of newly synthesized Schiff base molecules as efficient corrosion inhibitors for mild steel in 1 M HCl medium: an experimental, density functional theory and molecular dynamics simulation study. Mater. Chem. Front. 2, 1674–1691 (2018).  https://doi.org/10.1039/C8QM00162F Google Scholar
  175. 175.
    Antonijevic, M.M.; Petrovic, M.B.: Copper corrosion inhibitors. A review. Int. J. Electrochem. Sci. 3, 1–28 (2008)Google Scholar
  176. 176.
    Zhou, Y.; Xu, S.; Guo, L.; Zhang, S.; Lu, H.; Gong, Y.; Gao, F.: Evaluating two new synthesized Schiff bases on the corrosion of copper in NaCl solutions. RSC Adv. 10, 2072–2087 (2015).  https://doi.org/10.1039/C4RA14449J Google Scholar
  177. 177.
    Lv, T.M.; Zhu, S.H.; Guo, L.; Zhang, S.T.: Experimental and theoretical investigation of indole as a corrosion inhibitor for mild steel in sulfuric acid solution. Res. Chem. Intermed. 41, 7073–7093 (2014).  https://doi.org/10.1007/s11164-014-1799-y Google Scholar
  178. 178.
    Tan, J.; Guo, L.; Lv, T.; Zhang, S.: Experimental and computational evaluation of 3-indolebutyric acid as a corrosion inhibitor for mild steel in sulfuric acid solution. Int. J. Electrochem. Sci. 10, 823–837 (2015)Google Scholar
  179. 179.
    Qiang, Y.; Guo, L.; Zhang, S.; Li, W.; Yu, S.; Tan, J.: Synergistic effect of tartaric acid with 2,6-diaminopyridine on the corrosion inhibition of mild steel in 0.5 M HCl. Sci. Rep. 6, 1–14 (2016).  https://doi.org/10.1038/srep33305 Google Scholar
  180. 180.
    Kumar, C.B.P.; Mohana, K.N.: Corrosion inhibition efficiency and adsorption characteristics of some Schiff bases at mild steel/hydrochloric acid interface. J. Taiwan Inst. Chem. Eng. 45, 1031–1042 (2014).  https://doi.org/10.1016/j.jtice.2013.08.017 Google Scholar
  181. 181.
    Khaled, K.F.; Hamed, M.N.H.; Abdel-Azim, K.M.; Abdelshafi, N.S.: Inhibition of copper corrosion in 3.5 % NaCl solutions by a new pyrimidine derivative: electrochemical and computer simulation techniques. J. Solid State Electrochem. 15, 663–673 (2011).  https://doi.org/10.1007/s10008-010-1110-0 Google Scholar
  182. 182.
    Guo, L.; Ren, X.; Zhou, Y.; Xu, S.; Gong, Y.: Monte Carlo simulations of corrosion inhibition of copper by two Schiff bases. In: International Conference on Materials, Environmental and Biological Engineering (MEBE 2015), pp. 622–625 (2015)Google Scholar
  183. 183.
    Oliveira, A.F.; Seifert, G.; Heine, T.; Duarte, H.A.: Density-functional based tight-binding: an approximate DFT method. J. Braz. Chem. Soc. 20, 1193–1205 (2009).  https://doi.org/10.1590/S0103-50532009000700002 Google Scholar
  184. 184.
    Han, P.; He, Y.; Chen, C.; Yu, H.; Liu, F.; Yang, H.; Ma, Y.; Zheng, Y.: Study on synergistic mechanism of inhibitor mixture based on electron transfer behavior. Sci. Rep. 6, 1–10 (2016).  https://doi.org/10.1038/srep33252 Google Scholar
  185. 185.
    Aradi, B.; Hourahine, B.; Frauenheim, T.: DFTB+, a sparse matrix-based implementation of the DFTB method. J. Phys. Chem. A. 111, 5678–5684 (2007).  https://doi.org/10.1021/jp070186p Google Scholar
  186. 186.
    Guido, C.A.; Jacquemin, D.; Adamo, C.; Mennucci, B.: On the TD-DFT accuracy in determining single and double bonds in excited-state structures of organic molecules. J. Phys. Chem. A. 114, 13402–13410 (2010).  https://doi.org/10.1021/jp109218z Google Scholar
  187. 187.
    Guo, L.; Qi, C.; Zheng, X.; Zhang, R.; Shen, X.; Kaya, S.: Toward understanding the adsorption mechanism of large size organic corrosion inhibitors on an Fe(110) surface using the DFTB method. RSC Adv. 7, 29042–29050 (2017).  https://doi.org/10.1039/c7ra04120a Google Scholar
  188. 188.
    Guo, L.; Wu, M.; Kaya, S.; Chen, M.; Madkour, L.H.: Influence of the alkyl chain length of alkyltriazoles on the corrosion inhibition of iron: a DFTB study. In: AIP Conference Proceedings (2018)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Center of Research Excellence in Corrosion, Research InstituteKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Department of ChemistryKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations