Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 8, pp 6711–6726 | Cite as

Multihop Multibranch Spectrum Sensing for Cognitive Radio Networks

  • Raed AlhamadEmail author
  • Hatem Boujemaa
Research Article - Electrical Engineering
  • 22 Downloads

Abstract

In this paper, we derive the detection probability of cooperative spectrum sensing using the energy detector with multiple branches and multihops in each branch. The primary signal passes through \(L_{i}\) hops in the ith branch. Two cooperation protocols are considered. In the first one, the fusion center combines the signal of all branches, and it is known as all-participating relaying. It requires multiples channels for branch transmissions to avoid interferences. In the second one, only the branches with the highest SNR are activated. The results are valid for any number of hops and branches. We also consider situations where the direct link is available or not. We have studied the evolution of the detection probability with respect to the signal-to-noise ratio for a constant false alarm rate.

Keywords

Cooperative spectrum sensing Energy detector CFAR Amplify and forward Multihop multibranch relaying Cognitive radio networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    FCC.: Spectrum policy task force, In: Technical Report (2002)Google Scholar
  2. 2.
    Haykin, S.: Cognitive radio: brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 23, 201–220 (2005)CrossRefGoogle Scholar
  3. 3.
    Digham, F.F.; Alouini, M.S.; Simon, M.K.: On the energy detection of unknown signals over fading channels. IEEE Trans. Commun. 55(1), 21–24 (2007)CrossRefGoogle Scholar
  4. 4.
    Bhargavi, D.; Murthy, C.R.: Performance comparison of energy, matched-filter and cyclostationarity-based spectrum sensing. In: SPAWC (2010)Google Scholar
  5. 5.
    Man, L.; Li, Y.; Demir, A.: Matched filtering assisted energy detection for sensing weak primary user signals. In: ICASSP (2012)Google Scholar
  6. 6.
    Akyildiz, I.F.; Lo, B.F.; Balakrishnan, R.: Cooperative spectrum sensing in cognitive radio networks: a survey. Phys. Commun. 4, 40–62 (2011)CrossRefGoogle Scholar
  7. 7.
    Ghasemi, A.; Sousa, E.: Collaborative spectrum sensing for opportunistic access in fading environments. In: Proceedings of IEEE DySPAN, pp. 131–136 (2005)Google Scholar
  8. 8.
    Visotsky, E.; Kuffner, S.; Peterson, R.: On collaborative detection of TV transmissions in support of dynamic spectrum sharing. In: Proceedings of IEEE DySPAN, pp. 338–245 (2005)Google Scholar
  9. 9.
    Unnikrishnan, J.; Veeravalli, V.V.: Cooperative sensing for primary detection in cognitive radio. IEEE J. Sel. Top. Signal Process. 2, 18–27 (2008)CrossRefGoogle Scholar
  10. 10.
    Alhamad, R.; Wang, H.; Yao, Y.-D.: Cooperative spectrum sensing with random access reporting channels in cognitive radio networks. IEEE Trans. Veh. Technol. 99, 1–13 (2017)Google Scholar
  11. 11.
    Li, Z.; Yu, F.; Huang, M.: A cooperative spectrum sensing consensus scheme in cognitive radio. In: Proceedings of INFOCOM, pp. 2546–2550 (2009)Google Scholar
  12. 12.
    Ganesa, G.; Li, Y.G.: Cooperative spectrum sensing in cognitive radio, part I: two user networks. IEEE Trans. Wirel. Commun. 6, 2204–2213 (2007)CrossRefGoogle Scholar
  13. 13.
    Ganesa, G.; Li, Y.G.: Cooperative spectrum sensing in cognitive radio, part II: multiuser networks. IEEE Trans. Wirel. Commun. 6, 2204–2213 (2007)CrossRefGoogle Scholar
  14. 14.
    Zhang, W.; Letaief, K.: Cooperative spectrum sensing with transmit and relay diversity in cognitive radio networks. IEEE Trans. Wirel. Commun. 7(12), 4761–4766 (2008)CrossRefGoogle Scholar
  15. 15.
    Ma, J.; Zhao, G.; Li, Y.: Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. IEEE Trans. Wirel. Commun. 7(11), 4502–4507 (2008)CrossRefGoogle Scholar
  16. 16.
    Caso, G.; De Nardis, L.; Ferrante, G.C.; Di Benedetto, M.G.: Cooperative spectrum sensing based on majority decision under CFAR and CDR constraints. In: IEEE PIMRC (2013)Google Scholar
  17. 17.
    Ejaz, W.; Hattab, G.; Cherif, N.; Ibnkahla, M.; Abdelkefi, F.; Siala, M.: Cooperative spectrum sensing with heterogeneous devices: hard combining versus soft combining. IEEE Syst. J. 99, 1–12 (2017)Google Scholar
  18. 18.
    Guo, H.; Reisi, N.; Jiang, W.; Luo, W.: Soft combination for cooperative spectrum sensing in fading channels. IEEE Access 5, 975–986 (2017)CrossRefGoogle Scholar
  19. 19.
    Guo, H.; Jiang, W.; Luo, W.: Linear soft combination for cooperative spectrum sensing in cognitive radio networks. IEEE Commun. Lett. 21(7), 1573–1576 (2017)CrossRefGoogle Scholar
  20. 20.
    Hwang, I.; Lee, J.W.: Cooperative spectrum sensing with quantization combining over imperfect feedback channels. IEEE Trans. Signal Process. 65(3), 721–732 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kun, D.; Morgan, N.A.: A new low-cost CFAR detector for spectrum sensing with cognitive radio systems. In: IEEE Aerospace Conference, pp. 1–8 (2009)Google Scholar
  22. 22.
    Jian, G.; Xiang-Wei, M.; Ying-ning, P.; You, H.: The optimality in Neyman-Pearson sense in the distributed CFAR detection with multisensor. In: IEEE Radar Conference, pp. 68–72 (2002)Google Scholar
  23. 23.
    Caso, G.; De Nardis, L.; Ferrante, G.C.; Di Benedetto, M.-G.: Cooperative spectrum sensing based on Majority decision under CFAR and CDR constraints. In: 2013 IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops), pp. 51–55 (2013)Google Scholar
  24. 24.
    Chen, L.; Chen, W.; Wang, B.; Zhang, X.; Chen, H.; Yang, D.: System-level simulation methodology and platform for mobile cellular systems. IEEE Commun. Mag. 49(7), 148–155 (2011)CrossRefGoogle Scholar
  25. 25.
    Yang, X.; Peng, S.; Zhu, P.; Chen, H.; Cao, X.: Effect of correlations on the performance of GLRT detector in cognitive radios. IEICE Trans. Commun. 94–B(4), 1089–1093 (2011)CrossRefGoogle Scholar
  26. 26.
    Wang, J.; Chen, H.; Li, S.: SoftOutput MMSE VBLAST receiver with MMSE channel estimation under correlated Rician fading MIMO Channels. In: Wiley Wireless Communications and Mobile Computing, (2011)Google Scholar
  27. 27.
    Wang, J.; Wen, O.Y.; Chen, H.; Li, S.: Power allocation between pilot and data symbols for MIMO systems with MMSE detection under MMSE channel estimation. EURASIP J. Wirel. Commun. Netw. 2011, 785437 (2011)CrossRefGoogle Scholar
  28. 28.
    Wang, C.; Chen, H.; Yin, Q.; Feng, A.; Molisch, A.F.: Multi-user two-way relay networks with distributed beamforming. IEEE Trans. Wirel. Commun. 10(10), 3460–3471 (2011)CrossRefGoogle Scholar
  29. 29.
    Li, Y.; Yin, Q.; Sun, L.; Chen, H.; Wang, H.: A channel quality metric in opportunistic selection with outdated CSI over Nakagami-m fading channels. In: IEEE Transaction on Vehicular Technology (2012)Google Scholar
  30. 30.
    BenMimoune, A.; Khasawneh, F.A.; Kadoch, M.; Rong, B.: Resource allocation framework in 5G multi-hop relay system. In: IEEE Global Communications Conference (GLOBECOM), pp. 1–6, (2015)Google Scholar
  31. 31.
    Schmittner, M.; Asadi, A.; Hollick, M.: SEMUD: secure multi-hop device-to-device communication for 5G public safety networks. In: 2017 IFIP Networking Conference (IFIP Networking) and Workshops, pp. 1–9, (2017)Google Scholar
  32. 32.
    Sahoo, B.P.S.; Yao, C.-H.; Wei, H.-Y.: Millimeter-wave multi-hop wireless backhauling for 5G cellular networks. In: IEEE 85th Vehicular Technology Conference (VTC Spring) (2017)Google Scholar
  33. 33.
    Atapattu, S.; Tellambura, C.; Jiang, H.: Relay based cooperative spectrum sensing in cognitive radio networks. In: GLOBECOM (2009)Google Scholar
  34. 34.
    Atapattu, S.; Tellambura, C.; Jiang, H.: Energy detection based cooperative spectrum sensing in cognitive radio networks. IEEE Trans. Wirel. Commun. 4(10), 1232–1241 (2011)CrossRefGoogle Scholar
  35. 35.
    Zhao, Y.; Adve, R.; Lim, T.J.: Symbol error rate of selection amplify and forward relay systems. IEEE Commun. Lett. 10, 757–759 (2006)CrossRefGoogle Scholar
  36. 36.
    Ikki, S.S.; Ahmed, M.H.: Performance of multiple-relay cooperative diversity systems with best relay selection over Rayleigh fading channels. EURASIP J. Adv. Signal Process. 2008, 580368 (2008)CrossRefGoogle Scholar
  37. 37.
    Barua, B.; Ngo, H.Q.; Shin, H.: On the SEP of cooperative diversity with opportunistic relaying. IEEE Commun. Lett. 12(10), 727–729 (2008)CrossRefGoogle Scholar
  38. 38.
    Digham, F.F.; Alouini, M.S.; Simon, M.K.: On the energy detection of unknown signals over fading channels. In: Proceedings of IEEE ICC Conference, pp. 3575–3579 (2003)Google Scholar
  39. 39.
    Proakis, J.G.: Digital Communications, 3rd edn. Mc Graw Hill, New York (1995)zbMATHGoogle Scholar
  40. 40.
    Hasna, M.; Alouini, M.S.: End-to-end performance of transmission systems with relays over Rayleigh fading channels. IEEE Trans. Wirel. Commun. 2, 1126–1131 (2003)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Computer Science, College of Computation and InformaticsSaudi Electronic UniversityRiyadhSaudi Arabia
  2. 2.COSIM LaboratorySup’ComAryanahTunisia

Personalised recommendations