Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1515–1523 | Cite as

Convective Heat and Mass Transfer in Magneto Walter’s B Nanofluid Flow Induced by a Rotating Cone

  • S. Saleem
  • Hina Firdous
  • S. Nadeem
  • A. U. Khan
Research Article - Mechanical Engineering
  • 36 Downloads

Abstract

This work explores theoretical analysis for time-dependent flow of a Nano Walter’s B fluid on a rotational cone under magnetic regime. Angular velocity is taken as a reverse linear function of time near and away from the cone to obtain self-similar solutions. The analytical result of reduced nonlinear system has been achieved via optimal homotopy analysis method to simulate the flow performance graphically. Comparison with the published material is also a salient feature of the present exploration that validates the obtained results. It is observed that heat and mass transfer rates have contradictory effects on Brownian motion and thermophoresis parameters, respectively.

Keywords

Mixed convection Rotational flows Viscoelastic nanofluid Magnetic field Optimal analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to express their gratitude to King Khalid University, Abha 61413, Saudi Arabia, for providing administrative and technical support.

References

  1. 1.
    Ostrach, S.; Brown, W.H.: Natural convection inside a flat rotating container. NACA TN; 4323 (1921)Google Scholar
  2. 2.
    Ece, M.C.: An initial boundary layer flow past a translating and spinning rotational symmetric body. J. Eng. Math. 26, 415–428 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Anilkumar, D.; Roy, S.: Unsteady mixed convection flow on a rotating cone in a rotating fluid. Appl. Math. Comput. 155, 545–561 (2004)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Nadeem, S.; Saleem, S.: Analytical treatment of unsteady mixed convection MHD flow on a rotating cone in a rotating frame. J Taiwan Inst. Chem. Eng. 44(4), 596–604 (2013)CrossRefGoogle Scholar
  5. 5.
    Raju, C.S.K.; Sandeep, N.: Heat and mass transfer in MHD non-Newtonian bio-convection flow over a rotating cone/plate with cross diffusion. J. Mol. Liq. 215, 115–126 (2016)CrossRefGoogle Scholar
  6. 6.
    Reddy, G.K.; Yarrakula, K.; Raju, C.S.K.; Rahbari, A.: Mixed convection analysis of variable heat source/sink on MHD Maxwell, Jeffrey, and Oldroyd-B nanofluids over a cone with convective conditions using Buongiorno’s model. J. Ther. Anal. Calorim. 132(3), 1995–2002 (2018)CrossRefGoogle Scholar
  7. 7.
    Sreedevi, P.; Reddy, P.S.; Chamkha, A.J.: Magneto-hydrodynamics heat and mass transfer analysis of single and multi-wall carbon nanotubes over vertical cone with convective boundary condition. Int. J. Mech. Sci. 135, 646–655 (2018)CrossRefGoogle Scholar
  8. 8.
    Siddiqa, S.; Gul-e-Hina,; Begum, N.; Saleem, S.; Hossain, M.A.: Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone. Int. J. Heat Mass Trans. 101, 608–613 (2016)CrossRefGoogle Scholar
  9. 9.
    Imran, M.A.; Sohail, A.; Nazish, Shahid: Starting solutions for motion of a Maxwell fluid over an infinite plate that applies an oscillating shear to the fluid. Arab. J. Sci. Eng. 38, 3181–3190 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Shafiq, A.; Hammouch, A.; Turab, A.: Impact of radiation in a stagnation point flow of Walters’ B fluid towards a Riga plate. Ther. Sci. Eng. Progress 6, 27–33 (2018)CrossRefGoogle Scholar
  11. 11.
    Noreen, Sher Akbar: Blood flow suspension in tapered stenosed arteries for Walter’s B fluid model. Comput. Methods Programs Biomed. 132, 45–55 (2016)CrossRefGoogle Scholar
  12. 12.
    Lin, Yanhai; Zheng, Liancun; Li, Botong; Ma, Lianxi: A new diffusion for laminar boundary layer flow of power law fluids past a flat surface with magnetic effect and suction or injection. Int. J. Heat Mass Trans. 90, 1090–1097 (2015)CrossRefGoogle Scholar
  13. 13.
    Lin, Yanhai; Zheng, Liancun; Ma, Lianxi: Heat transfer characteristic of thin film power-law liquid films over horizontal stretching sheet with internal heating and variable thermal coefficient. Appl. Math. Mech. (English Ed.) 37(12), 1587–1596 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ali, Hazem; Mostafa, Attia; Abdeen, A.M.: Steady MHD flow of a dusty incompressible non-Newtonian Oldroyd 8-Constant fluid in a circular pipe. Arab. J. Sci. Eng. 38, 3153–3160 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Nadeem, S.; Mehmood, R.; Motsa, S.S.: Numerical investigation on MHD oblique flow of Walter’s B type nano fluid over a convective surface. Int. J. Ther. Sci. 92, 162–172 (2015)CrossRefGoogle Scholar
  16. 16.
    Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. Dev. Appl. Non-Newton. Flows 66, 99–105 (1995)Google Scholar
  17. 17.
    Buongiorno, J.: Convective transport in nanofluids. ASME J. Heat Trans. 128, 240–250 (2006)CrossRefGoogle Scholar
  18. 18.
    Li, Zhixiong; Sheikholeslami, M.; Shafee, Ahmad; Saleem, S.; Chamkha, A.J.: Effect of dispersing nanoparticles on solidification process in existence of Lorenz forces in a permeable media. J. Mol. Liq. 266, 181–193 (2018)CrossRefGoogle Scholar
  19. 19.
    Lin, Yanhai; Jiang, Yongyue: Effects of Brownian motion and thermophoresis on nanofluids in a rotating circular groove: a numerical simulation. Int. J. Heat Mass Trans. 123, 569–582 (2018)CrossRefGoogle Scholar
  20. 20.
    Wang, X.; Xu, X.; Choi, S.U.S.: Thermal conductivity of nanoparticle fluid mixture. J. Thermophys. Heat Transf. 13, 474–480 (1999)CrossRefGoogle Scholar
  21. 21.
    Sheikholeslami, M.; Mustafa, M.T.; Ganji, D.D.: Effect of Lorentz forces on forced-convection nanofluid flow over a stretched surface. Particuology 26, 108–113 (2016)CrossRefGoogle Scholar
  22. 22.
    Lin, Yanhai; Zheng, Liancun; Li, Botong; Chen, Goong: Particle shape and radiation effects on Marangoni boundary layer flow and heat transfer of copper-water nanofluid driven by an exponential temperature. Powder Tech. 301, 379–386 (2016)CrossRefGoogle Scholar
  23. 23.
    Vajravelu, K.; Prasad, K.V.: Chiu-On Ng: The effect of variable viscosity on the flow and heat transfer of a viscous Ag-water and Cu-water nanofluids. J. Hydrodyn. Ser. B 25, 1–9 (2013)CrossRefGoogle Scholar
  24. 24.
    Kiblinski, P.; Phillpot, S.R.; Choi, S.U.S.; Eastman, J.A.: Mechanism of heat flow is suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf. 42, 855–863 (2002)CrossRefzbMATHGoogle Scholar
  25. 25.
    Khan, W.A.; Pop, I.: Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53, 2477–2483 (2010)CrossRefzbMATHGoogle Scholar
  26. 26.
    Makinde, O.D.; Aziz, A.: Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Therm. Sci. 50, 1326–1332 (2011)CrossRefGoogle Scholar
  27. 27.
    Sandeep, N.; Sulochana, C.; Raju, C.S.K.; Babu, M.J.; Sugunamma, V.: Unsteady boundary layer flow of thermophoretic MHD nanofluid past a stretching sheet with space and time dependent internal heat source/sink. Appl. Appl. Math. 10, 312–327 (2015)zbMATHGoogle Scholar
  28. 28.
    Lin, Yanhai; Zheng, Liancun; Chen, Goong: Unsteady flow and heat transfer of pseudo-plastic nanoliquid in a finite thin film on a stretching surface with variable thermal conductivity and viscous dissipation. Powder Tech. 274, 324–332 (2015)CrossRefGoogle Scholar
  29. 29.
    Sheikholeslami, M.; Bandpy, M.G.; Ellahi, R.; Zeeshan, A.: Simulation of MHD CuO-water nanofluid flow and convective heat transfer considering Lorentz forces. J. Magn. Magn. Mater. 369, 69–80 (2014)CrossRefGoogle Scholar
  30. 30.
    Raju, C.S.K.; Saleem, S.; Mamatha, S.U.: Hussain, Iqtadar: Heat and mass transport phenomena of radiated slender body of three revolutions with saturated porous: Buongiorno’s model. Int. J. Ther. Sci. 132, 309–315 (2018)CrossRefGoogle Scholar
  31. 31.
    Nadeem, S.; Saleem, S.: Unsteady mixed convection flow of nanofluid on a rotating cone with magnetic field. Appl. Nanosci. 4, 405–414 (2013)CrossRefGoogle Scholar
  32. 32.
    Rashidi, M.M.; Raju, C.S.K.; Sandeep, N.; Saleem, S.: A numerical comparative study on 3D nanofluid flows. J. Comput. Theor. Nanosci. 13(8), 4835–4842 (2016)CrossRefGoogle Scholar
  33. 33.
    Makinde, O.D.; Khan, W.A.; Khan, Z.H.: Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int. J. Heat Mass Transf. 62, 526–533 (2013)CrossRefGoogle Scholar
  34. 34.
    Sheikholeslami, M.; Jafaryar, M.; Saleem, S.; Li, Zhixiong; Shafee, Ahmad; Jiang, Yu: Nanofluid heat transfer augmentation and exergy loss inside a pipe equipped with innovative turbulators. Int. J. Heat Mass Transf. 126(B), 156–163 (2018)CrossRefGoogle Scholar
  35. 35.
    Sheikholeslami, M.; Ghasemi, A.; Li, Zhixiong; Shafee, Ahmad; Saleem, S.: Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int. J. Heat Mass Transf. 126(A), 1252–1264 (2018)CrossRefGoogle Scholar
  36. 36.
    Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman & Hall/CRC Press, Boca Raton (2003)CrossRefGoogle Scholar
  37. 37.
    Liao, S.J.: An optimal Homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 15, 2003–2016 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Nadeem, S.; Hussain, Anwar; Khan, Majid: HAM solutions for boundary layer flow in the region of the stagnation point towards a stretching sheet. Commun. Nonlinear Sci. Numer. Simul. 15, 475–481 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Saleem, S.; Nadeem, S.; Rashidi, M.M.; Raju, C.S.K.: An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source. Microsyst. Technol.  https://doi.org/10.1007/s00542-018-3996-x (2018)
  40. 40.
    Awais, M.; Saleem, S.; Hayat, T.; Irum, S.: Hydromagnetic couple-stress nanofluid flow over a moving convective wall: OHAM analysis. Acta Astronaut. 129, 271–276 (2016)CrossRefGoogle Scholar
  41. 41.
    Ellahi, R.; Riaz, A.: Analytical solutions for MHD flow in a third-grade fluid with variable viscosity. Math. Comput. Model. 52, 1783–1793 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Nadeem, S.; Saleem, S.: Analytical study of rotating non-Newtonian nanofluid on a rotating cone. J. Thermophy. Heat Transf. 28(2), 295–302 (2015)CrossRefGoogle Scholar
  43. 43.
    Sheikholeslami, M.; Rokni, H.B.: Effect of melting heat transfer on nanofluid flow in existence of magnetic field considering Buongiorno model. Chin. J. Phys. 55(4), 1115–1126 (2017)CrossRefGoogle Scholar
  44. 44.
    Mehmood, R.; Nadeem, S.; Saleem, S.; Akbar, N.S.: Flow and heat transfer analysis of a Jeffery nanofluid impinging obliquely over a stretched plate. J. Taiwan Inst. Chem. Eng. 74, 49–58 (2017)CrossRefGoogle Scholar
  45. 45.
    Saleem, S.; Awais, M.; Nadeem, S.; Mustafa, T.; Sandeep, S.: Theoretical analysis of upper-convected Maxwell fluid flow with Cattaneo–Christov heat flux model. Chin. J. Phys. 55(4), 1615–1625 (2017)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • S. Saleem
    • 1
    • 2
  • Hina Firdous
    • 2
  • S. Nadeem
    • 3
  • A. U. Khan
    • 3
  1. 1.Department of Mathematics, College of SciencesKing Khalid UniversityAbhaSaudi Arabia
  2. 2.Department of Sciences and HumanitiesNational University of Computer and Emerging SciencesLahorePakistan
  3. 3.Department of MathematicsQuaid-i-Azam University, 45320IslamabadPakistan

Personalised recommendations