Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 75–85 | Cite as

Antimicrobial Activity and GC-MS Analysis of Bioactive Constituents of Thermophilic Bacteria Isolated from Saudi Hot Springs

  • S. A. AlrummanEmail author
  • Y. S. Mostafa
  • Shekha T. S. Al-Qahtani
  • T. Sahlabji
  • T. H. Taha
Research Article - Biological Sciences
  • 32 Downloads

Abstract

The bioactivity of thermophilic bacteria isolated from hot springs in the southern region of Saudi Arabia was investigated. Of the 84 bacterial isolates, the antimicrobial activity of 50 of them had an antagonistic effect against one or more of the tested human pathogens: Candida albican, Staphylococcus aureus, Proteus mirabilis, Klebsiella pneumonia and Shigella flexneri. Furthermore, four isolates exhibited the highest antagonistic ability against all pathogens. The molecular identification of selected promising isolates and phylogenetic analysis confirmed the accurate identity of the isolates as Bacillus sonorensis, Bacillus thermocopriae, Brevibacillus borstelensis and Brevibacillus parabrevis. GC-MS analysis of the cell-free extracts detected 40 secondary metabolites; each strain has its own secondary metabolites in addition to other compounds that are of industrial and pharmaceutical importance. The major secondary metabolites produced were cyclohexyl acrylate, imiloxan, tabtoxinine-\(\beta \)-lactam, nicotinyl alcohol, mephenesin, etomidate, L-menthyl lactate, (3-aminopropyl) dibutylborane, filbertone, and 1-dotriacontanol. These findings suggest a need to raise awareness of the value hot springs in Saudi Arabia have as locations for isolating thermophilic bacteria that could possibly serve as reservoirs for new bioactive compounds of industrial and medical importance.

Keywords

Hot springs Thermophilic bacteria Antagonism Bioactivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sen, S.K.; Mohapatra, S.K.; Satpathy, S.; Rao, G.T.: Characterization of hot water spring source isolated clones of bacteria and their industrial applicability. Int. J. Chem. Res. 2(1), 1–7 (2010)CrossRefGoogle Scholar
  2. 2.
    Rawana, A. K.: Isolation and characterization of thermophiles from hot springs in Jordan. In: M.Sc. thesis, Lund University, Sweden (2007)Google Scholar
  3. 3.
    Lashin, A.; Al Arifi, N.: Geothermal energy potential of southwestern of Saudi Arabia “exploration and possible power generation”: a case study at Al Khouba area-Jizan. Renew. Sustain. Energy Rev. 30, 771–789 (2014)CrossRefGoogle Scholar
  4. 4.
    Salem, M.M.E.; Ayesh, A.M.; Gomaa, M.A.E.; Abouwarda, A.M.: Ecological studies on hot springs of Al-Laith in Saudi Arabia. Am. Eur. J. Agric. Environ. Sci. 16(3), 625–634 (2016)Google Scholar
  5. 5.
    Lashin, A.: A preliminary study on the potential of the geothermal resources around the Gulf of Suez. Egypt. Arab. J. Geosci. 6(8), 2807–2828 (2013)CrossRefGoogle Scholar
  6. 6.
    Sikdar, A.; Raziuddin, M.; Gupta, K.K.: Isolation and characterization of thermophilic bacteria of a hot water spring source. Balbal. Int. J. Adv. Res. Biol. Sci. 2(5), 106–111 (2015)Google Scholar
  7. 7.
    Okeke, I.N.; Laxminarayan, R.; Bhutta, Z.A.; Duse, A.G.; Jenkins, P.; O’Brien, T.F.; Klugman, K.P.: (2005) Antimicrobial resistance in developing countries part I: recent trends and current status. Lancet Infect. Dis. 5(8), 481–493 (2005)CrossRefGoogle Scholar
  8. 8.
    Fandi, K.; Muaikel, N.A.; Momani, F.A.: Antimicrobial activities of some thermophiles isolated from Jordan hot springs. Int. J. Chem. Environ. Biol. Sci. 2, 57–60 (2014)Google Scholar
  9. 9.
    Stein, T.: Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56(4), 845–857 (2005)CrossRefGoogle Scholar
  10. 10.
    Pednekar, P.; Jain, R.; Mahajan, G.: Anti-infective potential of hot-spring bacteria. J. Glob. Infect. Dis. 3(3), 241 (2011)CrossRefGoogle Scholar
  11. 11.
    Ibrahim, A.S.S.; El-diwany, A.I.: Isolation and identification of new cellulases producing thermophilic bacteria from an Egyptian hot spring and some properties of the crude enzyme. Aust. J. Basic Appl. Sci. 1(4), 473–478 (2007)Google Scholar
  12. 12.
    Dopazo, C.P.; Lemos, M.L.; Lodeiros, C.; Bolinches, J.; Barja, J.L.; Toranzo, A.E.: Inhibitory activity of antibiotic-producing marine bacteria against fish pathogens. J. Appl. Bacteriol. 65(2), 97–101 (1988)CrossRefGoogle Scholar
  13. 13.
    Ravikumar, B.; Sarkar, S.; Davies, J.E.; Futter, M.; Garcia-Arencibia, M.; Green-Thompson, Z.W.; Massey, D.C.: Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev. 90(4), 1383–1435 (2010)CrossRefGoogle Scholar
  14. 14.
    Simoes, N.G.; Cardoso, V.V.; Ferreira, E.; Benoliel, M.J.; Almeida, C.M.: Experimental and statistical validation of SPME-GC-MS analysis of phenol and chlorophenols in raw and treated water. Chemosphere 68(3), 501–510 (2007)CrossRefGoogle Scholar
  15. 15.
    Neilan, B.A.: Identification and phylogenetic analysis of toxigenic cyanobacteria by multiplex randomly amplified polymorphic DNA PCR. Appl. Environ. Microbiol. 61(6), 2286–2291 (1995)Google Scholar
  16. 16.
    Khiyami, M.A.; Serour, E.A.; Shehata, M.M.; Bahklia, A.H.: Thermo-aerobic bacteria from geothermal springs in Saudi Arabia. Afr. J. Biotechnol. 1(1), 4053–4062 (2012)Google Scholar
  17. 17.
    Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Paterson, D.L.: Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18(3), 268–281 (2012)CrossRefGoogle Scholar
  18. 18.
    Hirsch, E.B.; Tam, V.H.: Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J. Antimicrob. Chemother. 65(6), 1119–1125 (2010). dkq108 CrossRefGoogle Scholar
  19. 19.
    Wunderink, R.G.; Niederman, M.S.; Kollef, M.H.; Shorr, A.F.; Kunkel, M.J.; Baruch, A.; Chastre, J.: Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin. Infect. Dis. 54(5), 621–629 (2012)CrossRefGoogle Scholar
  20. 20.
    Sarhan, M.A.; Alamri, S.: Characterization and identification of moderate thermophilic bacteria isolated from Jazan hot springs in Saudi Arabia. Egypt. Acad. J. Biol. Sci. 6(1), 6772 (2014)Google Scholar
  21. 21.
    Kawasaki, Y.; Aoki, M.; Makino, Y.; Sakai, H.; Tsuboi, Y.; Ueda, J.; Kurosawa, N.: Characterization of moderately thermophilic bacteria isolated from saline hot spring in Japan. Microbiol. Indones. 5(2), 2 (2011)CrossRefGoogle Scholar
  22. 22.
    Aanniz, T.; Ouadghiri, M.; Melloul, M.; Swings, J.; Elfahime, E.; Ibijbijen, J.; Amar, M.: Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils. Braz. J. Microbiol. 46(2), 443–453 (2015)CrossRefGoogle Scholar
  23. 23.
    Khalil, A.: Screening and characterization of thermophilic bacteria (lipase, cellulase and amylase producers) from hot springs in Saudi Arabia. J. Food Agric. Environ. 9(2), 672–675 (2011)Google Scholar
  24. 24.
    Kim, J.H.; Park, E.S.; Shim, J.H.; Kim, M.N.; Moon, W.S.; Chung, K.H.; Yoon, J.S.: Antimicrobial activity of p-hydroxyphenyl acrylate derivatives. J. Agric. Food Chem. 52(25), 7480–7483 (2004)CrossRefGoogle Scholar
  25. 25.
    Vijesh, A.M.; Isloor, A.M.; Telkar, S.; Arulmoli, T.; Fun, H.K.: Molecular docking studies of some new imidazole derivatives for antimicrobial properties. Arab. J. Chem. 6(2), 197–204 (2013)CrossRefGoogle Scholar
  26. 26.
    Galani, V.J.; Patel, B.G.; Patel, N.B.: Argyreia speciosa (Linn. f.) sweet: a comprehensive review. Pharmacogn. Rev. 4(8), 172 (2010)CrossRefGoogle Scholar
  27. 27.
    Farooq, M.U.; Bhatt, A.; Majid, A.; Gupta, R.; Khasnis, A.; Kassab, M.Y.: Levetiracetam for managing neurologic and psychiatric disorders. Am. J. Health Syst. Pharm. 66(6), 541–561 (2009)CrossRefGoogle Scholar
  28. 28.
    Zhang, Z.; Xing, D.; Liang, Q.; Yong, D.; Han, X.: Size controllable synthesis and antimicrobial activity of Poly-N, N\(^\prime \)- [(4, 5-dihydroxy-1, 2-phenylene) bis (methylene)] bisacrylamide microspheres. RSC Adv. 4(101), 57891–57898 (2014)CrossRefGoogle Scholar
  29. 29.
    Wang, C.C.; Yang, F.L.; Liu, L.F.; Fu, Z.M.; Xue, Y.: Hydrophilic and antibacterial properties of polyvinyl alcohol/4-vinylpyridine graft polymer modified polypropylene non-woven fabric membranes. J. Membr. Sci. 345(1), 223–232 (2009)CrossRefGoogle Scholar
  30. 30.
    Arrebola, E.; Cazorla, F.M.; Perez-Garcia, A.; Vicente, A.: Genes involved in the production of antimetabolite toxins by Pseudomonas syringae pathovars. Genes 2, 640–660 (2011)CrossRefGoogle Scholar
  31. 31.
    Gholivand, K.; Molaei, F.; Oroujzadeh, N.; Mobasseri, R.; Naderi-Manesh, H.: Two novel Ag (I) complexes of N-nicotinyl phosphoric triamide derivatives: synthesis, X-ray crystal structure and in vitro antibacterial and cytotoxicity studies. Inorg. Chim. Acta 423, 107–116 (2014)CrossRefGoogle Scholar
  32. 32.
    Şen, M.; Avcı, E.N.: Radiation synthesis of poly (N- vinyl- 2- pyrrolidone)–\(\kappa \)- carrageenan hydrogels and their use in wound dressing applications. I. Preliminary laboratory tests. J. Biomed. Mater. Res. Part A 74(2), 187–196 (2005)Google Scholar
  33. 33.
    Mazumder, P.M.; Mazumder, R.; Mazumder, A.; Sasmal, D.S.: Antimicrobial activity of the mycotoxin citrinin obtained from the fungus Penicillium citrinum. Anc. Sci. Life 21(3), 191 (2002)Google Scholar
  34. 34.
    Chang, P.; Terbach, N.; Plant, N.; Chen, P.E.; Walker, M.C.; Williams, R.S.: Seizure control by ketogenic diet-associated medium chain fatty acids. Neuropharmacology 69, 105–114 (2013)CrossRefGoogle Scholar
  35. 35.
    Patel, R.V.; Patel, P.K.; Kumari, P.; Rajani, D.P.; Chikhalia, K.H.: Synthesis of benzimidazolyl-1, 3, 4-oxadiazol-2ylthio-N-phenyl (benzothiazolyl) acetamides as antibacterial, antifungal and antituberculosis agents. Eur. J. Med. Chem. 53, 41–51 (2012)CrossRefGoogle Scholar
  36. 36.
    Zhang, J.: Antiviral activity of tannin from pericarp of Punica granatum against genital herpes simplex virus in vitro. China J. Chin. Mater. Med. 20, 556–558 (1995)Google Scholar
  37. 37.
    Al-Shahwany, A.W.; Al-Hemiri, A.A.; Abed, K.M.: Comparative evaluation of alkaloids extraction methods from the root bark of Punica granatum Linn. R Adv. Biores. 4(1), 33 (2013)Google Scholar
  38. 38.
    Chopra, S.; Matsuyama, K.; Hutson, C.; Madrid, P.: Identification of antimicrobial activity among FDA-approved drugs for combating Mycobacterium abscessus and Mycobacterium chelonae. J. Antimicrob. Chemother. 66(7), 1533–1536 (2011)CrossRefGoogle Scholar
  39. 39.
    Dayrit, F.M.: The properties of lauric acid and their significance in coconut oil. J. Am. Oil Chem. Soc. 92(1), 1–15 (2015)CrossRefGoogle Scholar
  40. 40.
    Eftekhari-Sis, B.; Zirak, M.; Akbari, A.: Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev. 113(5), 2958–3043 (2013)CrossRefGoogle Scholar
  41. 41.
    Pedersen, P.B.; Miller, J.D.: The fungal metabolite culmorin and related compounds. Nat. Toxins 7(6), 305–309 (1999)CrossRefGoogle Scholar
  42. 42.
    Aruoja, V.; Sihtmäe, M.; Dubourguier, H.C.; Kahru, A.: Toxicity of 58 substituted anilines and phenols to algae Pseudokirchneriella subcapitata and bacteria Vibrio fischeri: comparison with published data and QSARs. Chemosphere 84(10), 1310–1320 (2011)CrossRefGoogle Scholar
  43. 43.
    Ayoglu, H.; Kulah, C.; Turan, I.: Antimicrobial effects of two anaesthetic agents: dexmedetomidine and midazolam. Anaesth. Intensive Care 36(5), 681 (2018)Google Scholar
  44. 44.
    Xu, J.; Zhou, F.; Ji, B.P.; Pei, R.S.; Xu, N.: The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett. Appl. Microbiol. 47(3), 174–179 (2008)CrossRefGoogle Scholar
  45. 45.
    Chan, F.Y.; Sun, N.; Leung, Y.C.; Wong, K.Y.: Antimicrobial activity of a quinuclidine-based FtsZ inhibitor and its synergistic potential with \(\beta \)-lactam antibiotics. J. Antibiot. 68(4), 253–258 (2015)CrossRefGoogle Scholar
  46. 46.
    Couvreur, P.: Squalenoylation: a novel technology for anticancer and antibiotic drugs with enhanced activity. In: Lourtioz, J.-M., Lahmani, M., Dupas-Haeberlin, C., Hesto, P. (eds.) Nanosciences and Nanotechnology, pp. 253–272. Springer, Berlin (2016)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • S. A. Alrumman
    • 1
    Email author
  • Y. S. Mostafa
    • 1
  • Shekha T. S. Al-Qahtani
    • 1
    • 2
  • T. Sahlabji
    • 3
  • T. H. Taha
    • 4
  1. 1.Department of Biology, College of ScienceKing Khalid UniversityAbhaSaudi Arabia
  2. 2.Department of Biology, College of ScienceUniversity of BishaBishaSaudi Arabia
  3. 3.Department of Chemistry, College of ScienceKing Khalid UniversityAbhaSaudi Arabia
  4. 4.Environmental Biotechnology DepartmentGenetic Engineering and Biotechnology Research Institute, City of Scientific Research & Technological ApplicationsAlexandriaEgypt

Personalised recommendations