Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 289–304 | Cite as

Fly Ash Reuse as Mesoporous Ca- and Mg-Zeolitic Composites for the Seclusion of Aniline from Aqueous Solution

  • Bhavna A. ShahEmail author
  • Olutayo A. Oluyinka
  • Ajay V. Shah
Research Article - Chemistry
  • 9 Downloads

Abstract

This work reuses fly ash, a solid waste from cogeneration as a raw material for remediating water pollution. It presents an adsorption method of secluding aniline from wastewater by mesoporous zeolitic composites CaFZBFA and MgFZBFA synthesized from bagasse fly ash (BFA). Instrumental analyses revealed the transformation of the BFA into mesoporous zeolite composites. And pH-dependent adsorptions study showed the respective performances of the synthesized materials on the adsorption of aniline. Optimal uptakes on both adsorbents were obtained at pH 6. Langmuir isotherm model (\({R}^{2}=0.9937\) and 0.9906 for CaFZBFA and MgFZBFA, respectively) and pseudo-second-order kinetics model (\({R}^{2} = 0.9980\) for CaFZBFA and 0.9944 and MgFZBFA) best represent the adsorption processes. And the maximum monolayer adsorption capacities obtained are 34.130 mg/g and 33.220 mg/g for CaFZBFA and MgFZBFA, respectively.

Keywords

Water pollution Remediation Aniline Bagasse fly ash Isotherm Kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fagin, D.: A cancer cycle, from here to China (2013). http://www.nytimes.com/2013/01/12/opinion/a-cycle-of-contamination-and-cancer-that-wont-end.html. Accessed 23 Oct 2017
  2. 2.
    NPI: Aniline (Benzenamine). http://npi.gov.au/resource/aniline-benzenamine. Accessed 23 Oct 2017
  3. 3.
    Kegley, S.E.; Hill, B.R.; Orme, S.; Choi, A.H.: Aniline- Identification, toxicity, use, water pollution potential, ecological toxicity and regulatory information (2016). http://www.pesticideinfo.org/Detail_Chemical.jsp?Rec_Id=PC33847#Water. Accessed 23 Oct 2017
  4. 4.
    Jing, Z.Q.; Cao, S.W.; Yu, T.; Hu, J.: Degradation characteristics of aniline with ozonation and subsequent treatment analysis. J. Chem. 2015, 1–6 (2015).  https://doi.org/10.1155/2015/905921 Google Scholar
  5. 5.
    Hu, S.; Wu, Y.; Wang, L.; Yao, H.; Li, T.: Simultaneous removal of nitrate and aniline from groundwater by cooperating heterotrophic denitrification with anaerobic ammonium oxidation. Desalin. Water Treat. 52(40–42), 7937–7950 (2013).  https://doi.org/10.1080/19443994.2013.831788 Google Scholar
  6. 6.
    Chang, Y.P.; Ren, C.L.; Qu, J.C.; Chen, X.G.: Preparation and characterization of Fe\(_3\)O\(_4\)/graphene nanocomposite and investigation of its adsorption performance for aniline and p-chloroaniline. Appl. Surf. Sci. 261, 504–509 (2012).  https://doi.org/10.1016/j.apsusc.2012.08.045 Google Scholar
  7. 7.
    Jadhav, S.R.; Verma, N.; Sharma, A.; Bhattacharya, P.K.: Flux and retention analysis during micellar enhanced ultrafiltration for the removal of phenol and aniline. Sep. Purif. Technol. 24(3), 541–557 (2001)Google Scholar
  8. 8.
    Zhao, G.; Lu, X.; Zhou, Y.: Aniline degradation in aqueous solution by UV-aeration and UV-microO3 processes: efficiency, contribution of radicals and by-products. Chem. Eng. J. 229, 436–443 (2013)Google Scholar
  9. 9.
    Ferreira, M.; Pinto, M.F.; Neves, L.C.; Fonseca, A.M.; Soares, O.S.G.P.; Orfao, J.J.M.; Pereira, M.F.R.; Figueiredo, J.L.; Parpot, P.: Electrochemical oxidation of aniline at mono and bimetallic electrocatalysts supported on carbon nanotubes. Chem. Eng. J. 260, 309–315 (2015).  https://doi.org/10.1016/j.cej.2014.08.005 Google Scholar
  10. 10.
    Pham, T.D.; Shrestha, R.A.; Virkutyte, J.; Sillanpaa, M.: Recent studies in environmental applications of ultrasound. Can. J. Civ. Eng. 36(11), 1849–1858 (2009).  https://doi.org/10.1139/L09-068 Google Scholar
  11. 11.
    Zhang, S.; Li, A.; Cui, D.; Yang, J.; Ma, F.: Performance of enhanced biological SBR process for aniline treatment by a mycelial pellet as biomass carrier. Bioresou. Technol. 102, 4360–4365 (2011)Google Scholar
  12. 12.
    Visa, M.; Popa, N.: Adsorption of heavy metals cations onto zeolite material from aqueous solution. J. Memb. Sci. Technol. 5(01), 133 (2015).  https://doi.org/10.4172/2155-9589.1000133 Google Scholar
  13. 13.
    Ali, I.; Gupta, V.K.: Advances in water treatment by adsorption technology. Nat. Prot. 1(6), 2661–2667 (2006).  https://doi.org/10.1038/nprot.2006.370 Google Scholar
  14. 14.
    Largitte, L.; Pasquier, R.: A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des. 109, 495–504 (2016).  https://doi.org/10.1016/j.cherd.2016.02.006 Google Scholar
  15. 15.
    EMIS: Adsorption Techniques. https://emis.vito.be/en/techniekfiche/adsorption-techniques. Accessed 10 Feb 2018
  16. 16.
    Li, K.; Wang, X.: Adsorptive removal of Pb(II) by activated carbon prepared from Spartina alterniflora: equilibrium, kinetics and thermodynamics. Bioresour. Technol. 100(11), 2810–2815 (2009).  https://doi.org/10.1016/j.biortech.2008.12.032 Google Scholar
  17. 17.
    Dias, J.M.; Alvim-Ferraz, M.C.M.; Almeida, M.F.; Rivera-Utrilla, J.; Sanchez-Polo, M.: Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J. Environ. Manag. 85(4), 833–846 (2007).  https://doi.org/10.1016/j.jenvman.2007.07.031 Google Scholar
  18. 18.
    Xiao, G.Q.; Long, L.P.: Efficient removal of aniline by a water-compatible microporous and mesoporous hyper-cross-linked resin and XAD-4 resin: a comparative study. Appl. Surf. Sci. 258(17), 6465–6471 (2012).  https://doi.org/10.1016/j.apsusc.2012.03.062 Google Scholar
  19. 19.
    Hu, R.; Wang, X.; Dai, S.; Shao, D.; Hayat, T.; Alsaedi, A.: Application of graphitic carbon nitride for the removal of Pb(II) and aniline from aqueous solutions. Chem. Eng. J. 260, 469–477 (2015).  https://doi.org/10.1016/j.cej.2014.09.013 Google Scholar
  20. 20.
    Franus, W.; Wdowin, M.; Franus, M.: Synthesis and characterization of zeolites prepared from industrial fly ash. Environ. Monit. Assess. 186(9), 5721–5729 (2014).  https://doi.org/10.1007/s10661-014-3815-5 Google Scholar
  21. 21.
    Jha, B.; Singh, D.N.: Flyash zeolites: Innovations, applications, and directions. Adv. Struct. Mater. 78, 5–31 (2016).  https://doi.org/10.1007/978-981-10-1404-8 Google Scholar
  22. 22.
    Wang, S.B.; Peng, Y.L.: Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 156(1), 11–24 (2010).  https://doi.org/10.1016/j.cej.2009.10.029 Google Scholar
  23. 23.
    Huang, T.Y.; Chuieh, P.T.: Life cycle assessment of reusing fly ash from municipal solid waste incineration. Procedia Eng. 118, 984–991 (2015)Google Scholar
  24. 24.
    Martison, E.: EPA coal ash rule still not done (2014). https://www.politico.com/story/2014/03/epa-coal-ash-rule-104967. Accessed 26 Jan 2018
  25. 25.
    Raleigh, N.C.: Duke Energy Corporation agrees to \$6 million fine for coal ash spill, North Carolina says (2016). https://www.cbsnews.com/news/duke-energy-corporation-agrees-6-million-fine-coal-ash-spill-north-carolina. Accessed 26 Jan 2018
  26. 26.
    Rauf, N.; Damayanti, M.C.; Pratama, S.W.I.: The influence of sugarcane bagasse ash as fly ash on cement quality. In: AIP (2017)Google Scholar
  27. 27.
    James, J.; Pandian, P.K.: A short review on the valorisation of sugarcane bagasse fly ash in the manufacture of stabilized/sintered earth blocks and tiles. Adv. Mater. Sci. Eng. 2017, 1–15 (2017).  https://doi.org/10.1155/2017/1706893 Google Scholar
  28. 28.
    Querol, X.; Moreno, N.; Umana, J.C.; Alastuey, A.; Hernandez, E.; Lopez-Soler, A.; Plana, F.: Synthesis of zeolites from coal fly ash: an overview. Int. J. Coal Geol. 50(1–4), 413–423 (2002).  https://doi.org/10.1016/S0166-5162(02)00124-6 Google Scholar
  29. 29.
    Lokeshappa, B.; AnikKumar, D.: Disposal and management of fly ash. Paper Presented at the International Conference on Life Science and Technology.Google Scholar
  30. 30.
    Teixeira, S.R.; Pena, A.F.V.; Miguel, A.G.: Briquetting of charcoal from sugar-cane bagasse fly ash (SBFA) as an alternative fuel. Waste Manag. 30, 804–807 (2010)Google Scholar
  31. 31.
    Font, O.; Moreno, N.; Diez, S.; Querol, X.; Lopez-Soler, A.; Coca, P.; Pena, F.G.: Differential behaviour of combustion and gasification fly ash from Puertollano Power Plants (Spain) for the synthesis of zeolites and silica extraction. J. Hazard Mater. 166(1), 94–102 (2009).  https://doi.org/10.1016/j.jhazmat.2008.10.120 Google Scholar
  32. 32.
    Deng, H.; Ge, Y.: Formation of NaP zeolite from fused fly ash for the removal of Cu(II) by an improved hydrothermal method. RSC Adv. 5(12), 9180–9188 (2015).  https://doi.org/10.1039/c4ra15196h Google Scholar
  33. 33.
    Kazemian, H.; Naghdali, Z.; Kashani, T.G.; Farhadi, F.: Conversion of high silicon fly ash to Na-P1 zeolite: alkaline fusion followed by hydrothermal crystallization. Adv. Powder Technol. 21(3), 279–283 (2010).  https://doi.org/10.1016/j.apt.2009.12.005 Google Scholar
  34. 34.
    Molina, A.; Poole, C.: A comparative study using two methods to produce zeolites from fly ash. Miner. Eng. 17(2), 167–173 (2004).  https://doi.org/10.1016/j.mineng.2003.10.025 Google Scholar
  35. 35.
    Musyoka, N.M.; Petrik, L.F.; Hums, E.; Kuhnt, A.; Schwieger, W.: Thermal stability studies of zeolites A and X synthesized from South African coal fly ash. Res. Chem. Intermed. 41(2), 575–582 (2013).  https://doi.org/10.1007/s11164-013-1211-3 Google Scholar
  36. 36.
    Shigemoto, N.; Hayashi, H.; Miyaura, K.: Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction. J. Mater. Sci. 28(17), 4781–4786 (1993).  https://doi.org/10.1007/Bf00414272 Google Scholar
  37. 37.
    Deepesh, B.; Radha, T.; Purnima, K.S.; Yogesh, G.; Pankaj, S.: Hydrothermal synthesis and characterization of zeolite: effect of crystallization temperature. Res. J. Chem. Sci. 3(9), 1–4 (2013)Google Scholar
  38. 38.
    Fiol, N.; Villaescusa, I.: Determination of sorbent point of zero charge: usefulness in sorption studies. Environ. Chem. Lett. 7(1), 79–84 (2009).  https://doi.org/10.1007/s10311-008-0139-0 Google Scholar
  39. 39.
    Cardenas-Pena, A.M.; Ibanez, J.G.; Vasquez-Medrano, R.: Determination of the point of zero charge for electrocoagulation precipitates from an iron anode. Int. J. Electrochem. Sci. 7(7), 6142–6153 (2012)Google Scholar
  40. 40.
    Mahmood, T.; Saddique, M.T.; Naeem, A.; Westerhoff, P.; Mustafa, S.; Alum, A.: Comparison of different methods for the point of zero charge determination of NiO. Ind. Eng. Chem. Res. 50(17), 10017–10023 (2011).  https://doi.org/10.1021/ie200271d Google Scholar
  41. 41.
    Tran, H.N.; Wang, Y.; You, S.; Chao, H.: Insights into the mechanism of cationic dye adsorption on activated charcoal: the importance of pie-pie interactions. Process Saf. Environ. Prot. 107, 168–180 (2017)Google Scholar
  42. 42.
    Dias, N.C.; Steiner, P.A.; Braga, M.C.B.: Characterization and modification of a clay mineral used in adsorption tests. J. Miner. Mater. Charact. Eng. 3, 277–288 (2015)Google Scholar
  43. 43.
    Amodu, O.S.; Ojumu, T.V.; Ntwampe, S.K.; Ayanda, O.S.: Rapid adsorption of crystal violet onto magnetic zeolite synthesized from fly ash and magnetite nanoparticles. J. Encapsul. Adsorpt. Sci. 5, 191–203 (2015)Google Scholar
  44. 44.
    NPTEL: Surface Chemistry and Adsorption. http://nptel.ac.in/courses/122101001/downloads/lec-36.pdf? Accessed 8 Feb 2018
  45. 45.
    Ayawei, N.; Ebelegi, A.N.; Wankasi, D.: Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 1–11 (2017).  https://doi.org/10.1155/2017/3039817 Google Scholar
  46. 46.
    Abdollahi, S.B.: A new approach for analysis of adsorption from liquid phase: a critical review. J. Pollut. Eff. Control 3(2), 139 (2015).  https://doi.org/10.4172/2375-4397.1000139 Google Scholar
  47. 47.
    Limousin, G.; Gaudet, J.P.; Charlet, L.; Szenknect, S.; Barthes, V.; Krimissa, M.: Sorption isotherms: a review on physical bases, modeling and measurement. Appl. Geochem. 22(2), 249–275 (2007).  https://doi.org/10.1016/j.apgeochem.2006.09.010 Google Scholar
  48. 48.
    UW: Adsorption Equilibria Principles. http://mimoza.marmara.edu.tr/~zehra.can/ENVE401/3.%20Adsorption%20Equilibria.pdf. Accessed 2 Feb 2018
  49. 49.
    Lagergren, S.: About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapasakademiens. Handlingar Band 24(4), 1–39 (1898)Google Scholar
  50. 50.
    Ho, Y.S.; McKay, G.: Adsorption of dye from aqueous solution by peat. Chem. Eng. J. 70(2), 115–124 (1998)Google Scholar
  51. 51.
    Liu, Y.: New insights into pseudo-second-order kinetic equation for adsorption. Colloid Surf. A 320(1–3), 275–278 (2008).  https://doi.org/10.1016/j.colsurfa.2008.01.032 Google Scholar
  52. 52.
    Wu, F.-C.; Tseng, R.-L.; Juang, R.-S.: Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 153, 1–8 (2009).  https://doi.org/10.1016/j.cej.2009.04.042 Google Scholar
  53. 53.
    Weber Jr., W.J.; Morris, J.C.: Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89, 31–60 (1963)Google Scholar
  54. 54.
    Sarkar, M.; Acharya, P.K.; Bhattacharya, B.: Modeling the adsorption kinetics of some priority organic pollutants in water from diffusion and activation energy parameters. J. Colloid Interface Sci. 266, 28–32 (2003).  https://doi.org/10.1016/S0021-9797(03)00551-4 Google Scholar
  55. 55.
    Musyoka, N.M.; Petrik, L.F.; Fatoba, O.O.; Hums, E.: Synthesis of zeolites from coal fly ash using mine waters. Miner. Eng. 53, 9–15 (2013).  https://doi.org/10.1016/j.mineng.2013.06.019 Google Scholar
  56. 56.
    Fungaro, D.A.; Bruno, M.; Grosche, L.C.: Adsorption and kinetic studies of methylene blue on zeolite synthesized from fly ash. Desalin. Water Treat. 2(1–3), 231–239 (2009).  https://doi.org/10.5004/Dwt.2009.305 Google Scholar
  57. 57.
    Scott, M.A.; Kathleen, A.C.; Prabir, K.D.: Handbook of Zeolite Science and Technology. Marcel Dekker Inc, New York (2003)Google Scholar
  58. 58.
    Tantawy, M.A.; El-Roudi, A.M.; Salem, A.A.: Utilization of bagasse ash as supplementary cementitious material. Int. J. Eng. Res. Technol. (IJERT) 3(7) (2014)Google Scholar
  59. 59.
    Mainganye, D.; Ojumu, T.V.; Petrik, L.: Synthesis of zeolites Na-P1 from South African coal fly ash: effect of impeller design and agitation. Materials 6(5), 2074–2089 (2013).  https://doi.org/10.3390/ma6052074 Google Scholar
  60. 60.
    Tanaka, H.; Furusawa, S.; Hino, R.: Synthesis, characterization, and formation process of Na-X zeolite from coal fly ash. J. Mater. Synth. Process. 10(3), 143–148 (2002).  https://doi.org/10.1023/A:1021938729996 Google Scholar
  61. 61.
    Wu, D.Y.; Lu, Y.K.; Kong, H.N.; Ye, C.; Jin, X.C.: Synthesis of zeolite from thermally treated sediment. Ind. Eng. Chem. Res. 47(2), 295–302 (2008).  https://doi.org/10.1021/ie071063u Google Scholar
  62. 62.
    Franus, W.; Wdowin, M.; Franus, M.: Synthesis and characterization of zeolites prepared from industrial fly ash. Environ. Monit. Assess. 186, 5721–5729 (2014).  https://doi.org/10.1007/s10661-014-3815-5 Google Scholar
  63. 63.
    Koukouzas, N.; Vasilatos, C.; Itskos, G.S.; Moutsatsou, A.: Characterization of CFB-coal fly ash zeolitic materials and their potential use in wastewater treatment. Paper Presented at the World of Coal Ash (WOCA), Lexington, KY, USAGoogle Scholar
  64. 64.
    Clayden, J.; Greeves, N.; Warren, S.: Organic Chemistry Textbook, 2nd ed. (2012)Google Scholar
  65. 65.
    Sepulveda, L.A.; Santana, C.C.: Effect of solution temperature, pH and ionic strength on dye adsorption onto Magellanic peat. Environ. Technol. 34(8), 967–977 (2013).  https://doi.org/10.1080/09593330.2012.724251 Google Scholar
  66. 66.
    Hashim, M.A.; Chu, K.-H.; Tsan, P.-S.: Effects of ionic strength and ph on the adsorption equilibria of lysozyme on ion exchangers. J. Chem. Tech. Biotechnol. 62, 253–260 (1995)Google Scholar
  67. 67.
    Padmavathy, K.S.; Madhu, G.; Haseena, P.V.: A study on effects of pH, adsorbent dosage, time, initial concentration and adsorption isotherm study for the removal of hexavalent chromium (Cr (VI)) from wastewater by magnetite nanoparticle. Procedia Technol. 24, 585–594 (2016).  https://doi.org/10.1016/j.protcy.2016.05.127 Google Scholar
  68. 68.
    Osu, C.I.; Odoemelam, S.A.: Studies on adsorbent dosage, particle sizes and pH constraints on biosorption of Pb(II) and Cd(II) ions from aqueous solution using modified and unmodified Crassostrea gasar (Bivalve) Biomass. IAAST 1, 62–68 (2010)Google Scholar
  69. 69.
    Ozer, A.; Akkaya, G.; Turabik, M.: The biosorption of Acid Red 337 and Acid Blue 324 on Enteromorpha prolifera: the application of nonlinear regression analysis to dye biosorption. Chem. Eng. J. 112(1–3), 181–190 (2005).  https://doi.org/10.1016/j.cej.2005.07.007 Google Scholar
  70. 70.
    Vadivelan, V.; Kumar, K.V.: Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J. Colloid Interface Sci. 286, 90–100 (2005).  https://doi.org/10.1016/j.jcis.2005.01.007 Google Scholar
  71. 71.
    Lorenc-Grabowska, E.; Gryglewicz, G.: Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dyes and Pigments 74, 34–40 (2007).  https://doi.org/10.1016/j.dyepig.2006.01.027 Google Scholar
  72. 72.
    Zhou, Y.; Gu, X.; Zhang, R.; Lu, J.: Removal of aniline from aqueous solution using pine sawdust modified with citric acid and \(\beta \)-cyclodextrin. Ind. Eng. Chem. Res. 53(2), 887–894 (2014).  https://doi.org/10.1021/ie403829s Google Scholar
  73. 73.
    Wei, L.X.Y.; Qingxin, G.: Effect of template in MCM-41 on the sorption of aniline from aqueous solution. J. Environ. Manag. 92, 2939–2943 (2011)Google Scholar
  74. 74.
    Huang, R.H.; Yang, B.C.; Liu, Q.; Liu, Y.P.: Simultaneous adsorption of aniline and Cr(VI) ion by activated carbon/chitosan composite. J. Appl. Polym. Sci. (2014).  https://doi.org/10.1002/app.39903
  75. 75.
    Hong, Z.; Donghong, L.; Yan, Z.; Shuping, L.; Zhe, L.: Sorption isotherm and kinetic modelling of aniline on Cr-bentonite. J. Hazard. Mater. 167, 141–147 (2009)Google Scholar
  76. 76.
    Ersoy, B.; Celik, M.S.: Uptake of aniline and nitrobenzene from aqueous solution by organo-zeolite. Environ. Technol. 25(3), 341–348 (2004).  https://doi.org/10.1080/09593330409355467 Google Scholar
  77. 77.
    Shah, B.A.; Abebe, A.A.; Shah, A.V.: Microwave-synthesized barium-impregnated siliceous zeolitic material derived from bagasse fly ash for uptake of aniline. Arab. J. Sci. Eng. 42(1), 139–152 (2017).  https://doi.org/10.1007/s13369-016-2083-9 Google Scholar
  78. 78.
    Fuqiang, A.; Xiaoqin, F.; Baojiao, G.: Adsorption of aniline from aqueous solution using novel adsorbent PAM/SiO\(_2\). Chem. Eng. J. 151, 183–187 (2009)Google Scholar
  79. 79.
    Babak, K.; Ahmad, J.J.; Roshanak, R.K.; Simin, N.; Ahmad, A.; Ali, E.: Synthesis and properties of Fe\(_3\)O\(_4\)-activated carbon magnetic nanoparticles for removal of aniline from aqueous solution: equilibrium, kinetic and thermodynamic studies. Iran. J. Environ. Health Sci. Eng 10, 1–9 (2013)Google Scholar
  80. 80.
    Yu, S.; Wang, X.; Chen, Z.; Wang, J.; Wang, S.; Hayat, T.; Wang, X.: Layered double hydroxide intercalated with aromatic acid anions for the efficient capture of aniline from aqueous solution. J. Hazard. Mater. 321, 111–120 (2017).  https://doi.org/10.1016/j.jhazmat.2016.09.009 Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Bhavna A. Shah
    • 1
    Email author
  • Olutayo A. Oluyinka
    • 1
  • Ajay V. Shah
    • 2
  1. 1.Department of ChemistryVeer Narmad South Gujarat UniversitySuratIndia
  2. 2.Department of Science and HumanitiesVidyabharti Trust PolytechnicBardoliIndia

Personalised recommendations