Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1459–1473 | Cite as

Experimental Investigation on the Tribo-Thermal Properties of Brake Friction Materials Containing Various Forms of Graphite: A Comparative Study

  • S. Manoharan
  • R. Vijay
  • D. Lenin Singaravelu
  • Mohamed KchaouEmail author
Research Article - Mechanical Engineering


The objective of this research work is to study the impact of graphite forms used as solid lubricant additives on brake friction materials performance. Three composites were fabricated using the conventional process and were characterised for its physical, chemical, mechanical and thermal properties conforming to industrial standards. The thermal stability of the graphite particles and developed composites was measured in an air atmosphere using the thermogravimetric analyser. The tribological performances were studied using the Chase friction test machine as per IS-2742 Part-4 standard. The results indicated that the friction composite containing expandable graphite exhibited better thermal stability with good fade and recovery performances. This led to enhance wear resistance and stable friction due to its better heat dissipation and lubricity comparing with the other two composites. An empirical relationship for the friction and wear was developed based on Chase test results. The worn surface morphologies of the Chase tested composites were analysed using scanning electron microscopy to study the sensitivity of the friction–wear mechanisms to the graphite-type effect.


Graphite Solid lubricant Brake friction material Fade and recovery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Filip, P.; Weiss, Z.; Rafaja, D.: On friction layer formation in polymer matrix composite materials for brake applications. Wear 252(3–4), 189–198 (2002)CrossRefGoogle Scholar
  2. 2.
    Yousef, M.A.; Saied, M.D.: Generalized braking characteristics of friction pad synthetic graphite composites. Tribol. Int. 43, 838–843 (2010)CrossRefGoogle Scholar
  3. 3.
    Öztürk, B.; Öztürk, S.; Adem, A.A.: Effect of type and relative amount of solid lubricants and abrasives on the tribological properties of brake friction materials. Tribol. Trans. 56, 428–441 (2013)CrossRefGoogle Scholar
  4. 4.
    Kim, S.J.; Cho, M.H.; Cho, K.H.; Jang, H.: Complementary effects of solid lubricants in the automotive brake lining. Tribol. Int. 40, 15–20 (2007)CrossRefGoogle Scholar
  5. 5.
    Chen, B.; Bi, Q.; Yang, J.; Xia, Y.; Hao, J.: Tribological properties of solid lubricants (Graphite, h-BN) for Cu-based P/M friction composites. Tribol. Int. 41, 1145–1152 (2008)CrossRefGoogle Scholar
  6. 6.
    Chung, D.D.L.: Graphite review. J. Mater. Sci. 37, 1475–1489 (2002)CrossRefGoogle Scholar
  7. 7.
    Kolluri, D.K.; Boidin, X.; Desplanques, Y.; Degallaix, G.; Ghosh, A.K.; Kumar, M.; Bijwe, J.: Effect of natural graphite particle size in friction materials on thermal localisation phenomenon during stop-braking. Wear 268, 1472–1482 (2010)CrossRefGoogle Scholar
  8. 8.
    Roberto, C.: Dante Handbook of friction materials and their applications, pp. 93–102. Woodhead publishing, Sawton (2016)Google Scholar
  9. 9.
    Kim, S.J.; Cho, M.H.; Cho, K.H.; Jang, H.: Complementary effects of solid lubricants in the automotive brake lining. Tribol. Int. 40(1), 15–20 (2007)CrossRefGoogle Scholar
  10. 10.
    Gilardi, R.; Alzati, L.; Thiam, M.; Brunel, J.F.; Desplanques, Y.; Dufrénoy, P.; Sharma, S.; Bijwe, J.: Copper substitution and noise reduction in brake pads: graphite type selection. Materials 5(11), 2258–2269 (2012)CrossRefGoogle Scholar
  11. 11.
    Aranganathan, N.; Bijwe, J.: Comparative performance evaluation of NAO friction materials containing natural graphite and thermo-graphite. Wear 358–359, 17–22 (2016)CrossRefGoogle Scholar
  12. 12.
    Sever, K.; Tavman, I.H.; Seki, Y.; Turgut, A.; Omastova, M.; Ozdemir, I.: Electrical and mechanical properties of expanded graphite/high density polyethylene nano composites. Compos. Part B 53, 226–233 (2013)CrossRefGoogle Scholar
  13. 13.
    Manoharan, S.; Krishnaraj, V.; Vijay, R.; Suresha, B.; Lenin Singaravelu, D.: Development and characterization of novel fiber reinforced hybrid friction composites. Green Compos. 6, 69–114 (2017)Google Scholar
  14. 14.
    Aranganathan, N.; Bijwe, J.: Special grade of graphite in NAO friction materials for possible replacement of copper. Wear 330, 515–523 (2015)CrossRefGoogle Scholar
  15. 15.
    Lum, R.; Wilkins, C.W.; Robbins, M.; Lyons, A.M.; Jones, R.P.: Thermal analysis of graphite and carbon-phenolic composites by pyrolysis-mass spectrometry. Carbon 21(2), 111–116 (1983)CrossRefGoogle Scholar
  16. 16.
    Jiang, W.: Thermal analysis of the oxidation of natural graphite—effect of particle size. Thermochimica Acta 351(1–2), 85–93 (2000)CrossRefGoogle Scholar
  17. 17.
    Talib, R.J.; Azimah, M.A.B.; Yuslina, J.; Arif, S.M.; Ramlan, K.: Analysis on the hardness characteristics of semi-metallic friction materials. J. Solid State Sci. Technol. 16(1), 124–129 (2008)Google Scholar
  18. 18.
    Wang, L.; Fu, X.; Chang, E.; Wu, H.; Zhang, K.; Lei, X.; Zhang, R.; Qi, X.; Yang, Y.: Preparation and its adsorptive property of modified expanded graphite nano materials. J. Chem. 2014, 1–5 (2014)Google Scholar
  19. 19.
    Shin, M.W.; Cho, K.H.; Lee, W.K.; Jang, H.: Tribological characteristics of binder resins for brake friction materials at elevated temperatures. Tribol. Lett. 38, 161–168 (2010)CrossRefGoogle Scholar
  20. 20.
    Öztürk, B.; Arslan, F.; Öztürk, S.: Hot wear properties of ceramic and basalt fiber reinforced hybrid friction materials. Tribol. Int. 40(1), 37–48 (2007)CrossRefGoogle Scholar
  21. 21.
    Choa, M.H.; Cho, K.H.; Kim, S.J.; Kim, D.H.; Jang, H.: The role of transfer layers on friction characteristics in the sliding interface between friction materials against gray iron brake disks. Tribol. Lett. 20, 101–108 (2005)CrossRefGoogle Scholar
  22. 22.
    Samrat, S.; Chugh, Y.P.: Development of fly ash-based automotive brake lining. Tribol. Int. 40(7), 1217–1224 (2007)CrossRefGoogle Scholar
  23. 23.
    Raj Kumar, K.; Aravindan, S.: Tribological behavior of microwave processed copper-nano graphite composites. Tribol. Int. 57, 282–296 (2013)CrossRefGoogle Scholar
  24. 24.
    Kchaou, M.; Sellami, A.; Elleuch, R.: Friction characteristics of a brake friction material under different braking conditions. Mater. Des. 52, 533–540 (2013)CrossRefGoogle Scholar
  25. 25.
    Cho, M.H.; Ju, J.; Kim, S.J.; Jang, H.: Tribological properties of solid lubricants (graphite, \(\text{ Sb }_{2}\text{ S }_{3}\), \(\text{ MoS }_{2})\) for automotive brake friction materials. Wear 260(7–6), 855–860 (2006)CrossRefGoogle Scholar
  26. 26.
    Wirth, A.; Eggleston, D.; Whitaker, R.: A fundamental tribo-chemical study of the third body layer formed during automotive friction braking. Wear 179, 75–81 (1994)CrossRefGoogle Scholar
  27. 27.
    Satapathy, B.K.; Patnaik, A.; Dadkar, N.; Rath, P.; Tomar, B.S.: Investigations on friction-fade and friction-recovery performance of phenolic composites based on fly ash–graphite combinations for braking applications. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 226(5), 439–450 (2012)CrossRefGoogle Scholar
  28. 28.
    Dadkar, N.; Tomar, B.S.; Satapathy, B.K.: Evaluation of flyash-filled and aramid fibre reinforced hybrid polymer matrix composites (PMC) for friction braking applications. Mater. Des. 30(10), 4369–4376 (2009)CrossRefGoogle Scholar
  29. 29.
    Rhee, S.K.: Friction properties of a phenolic resin filled with iron and graphite-sensitivity to load, speed and temperature. Wear 28(2), 277–281 (1974)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSSM College of EngineeringKomarapalayamIndia
  2. 2.Department of Production EngineeringNational Institute of TechnologyTiruchirappalliIndia
  3. 3.Department of Mechanical Engineering, ENIS, LASEMUniversity of SfaxSfaxTunisia

Personalised recommendations