Advertisement

Biosorption of Cd(II) Ions from Aqueous Solution Using Chitosan-iso-Vanillin as a Low-Cost Sorbent: Equilibrium, Kinetics, and Thermodynamic Studies

  • Fadi Alakhras
Research Article - Chemistry

Abstract

In the current study, the removal of Cd(II) ions from aqueous solution using chitosan-iso-vanillin biosorbent has been investigated. The impacts of pH, exposure time, adsorbent dosage and initial amount of studied ion on the removal process have been carried out using batch experiments. The quantity of residual ions has been estimated via atomic absorption spectrometry. The synthesized biosorbent is characterized using infrared spectroscopy, DTA, and SEM techniques. The maximum sorption of Cd(II) ions is achieved at pH 5. Langmuir isotherm works as the best explanation model for the experimental data with the highest adsorption capacity equal to \(38.31\,\hbox {mg g}^{-1}\). Kinetic studies reveal that chemisorption is the rate-determining step, and the results point out fast rates of metal ion uptake with 77% highest percentage achieved after 60 min. Thermodynamics suggest spontaneous and endothermic process with raise in randomness at the solid/solution interface throughout the bio-adsorption of Cd(II) ions onto modified chitosan.

Keywords

Biosorption Chitosan-iso-vanillin Wastewater treatment Cadmium removal Isotherm models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author wishes to acknowledge Imam Abdulrahman Bin Faisal University for financial support.

Compliance with ethical standards

Conflicts of interest

No potential conflict of interest was reported by the author(s).

References

  1. 1.
    Ali, I.; Aboul-Enein, H.Y.; Gupta, V.K.: Nano Chromatography and Capillary Electrophoresis: Pharmaceutical and Environmental Analyses. Wiley, Hoboken (2009). ISBN: 978-0-470-17851-5Google Scholar
  2. 2.
    Gupta, V.K.; Ali, I.: Environmental Water: Advances in Treatment, Remediation and Recycling. Elsevier, Amsterdam (2012)Google Scholar
  3. 3.
    Vieira, R.S.; Beppu, M.M.: Dynamic and static adsorption and desorption of Hg(II) ions on chitosan membranes and spheres. Water Res. 40, 1726–1734 (2006)CrossRefGoogle Scholar
  4. 4.
    Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N.: Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7, 60–72 (2014)CrossRefGoogle Scholar
  5. 5.
    Madala, S.; Nadavala, S.K.; Vudagandla, S.; Boddu, V.M.; Abburi, K.: Equilibrium, kinetics and thermodynamics of Cadmium(II) biosorption on to composite chitosan biosorbent. Arabian J. Chem. 10, S1883–S1893 (2017)CrossRefGoogle Scholar
  6. 6.
    Fenglian, F.; Wang, Q.: Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92, 407–418 (2011)CrossRefGoogle Scholar
  7. 7.
    Pillai, S.S.; Deepa, B.; Abraham, E.; Girija, N.; Geetha, P.; Jacob, L.; Koshy, M.: Biosorption of Cd(II) from aqueous solution using xanthated nano banana cellulose: equilibrium and kinetic studies. Ecotoxicol. Environ. Saf. 98, 352–360 (2013)CrossRefGoogle Scholar
  8. 8.
    Ngah, W.S.; Teong, L.C.; Hanafiah, M.A.K.M.: Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr. Polym. 83, 1446–1456 (2011)CrossRefGoogle Scholar
  9. 9.
    Wang, J.; Chen, C.: Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour. Technol. 160, 129–141 (2014)CrossRefGoogle Scholar
  10. 10.
    Feng, N.; Guo, X.; Liang, S.; Zhu, Y.; Liu, J.: Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. Hazard. Mater. 185, 49–54 (2011)CrossRefGoogle Scholar
  11. 11.
    Bhattari, N.; Gunn, J.; Zhang, M.: Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 62, 83–99 (2010)CrossRefGoogle Scholar
  12. 12.
    Jayakumar, R.; Prabaharan, M.; Nair, S.V.; Tamura, H.: Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol. Adv. 28, 142–150 (2010)CrossRefGoogle Scholar
  13. 13.
    Wu, F.C.; Tseng, R.L.; Juang, R.S.: A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. J. Environ. Manag. 91, 798–806 (2010)CrossRefGoogle Scholar
  14. 14.
    Vunain, E.; Mishra, A.K.; Mamba, B.B.: Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: a review. Int. J. Biol. Macromol. 86, 570–586 (2016)CrossRefGoogle Scholar
  15. 15.
    Chen, A.H.; Liu, S.C.; Chen, C.Y.: Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. J. Hazard. Mater. 154, 184–191 (2008)CrossRefGoogle Scholar
  16. 16.
    Gupta, N.; Kushwaha, A.K.; Chattopadhyaya, M.C.: Adsorption studies of cationic dyes onto Ashoka (Saraca asoca) leaf powder. J. Taiwan Inst. Chem. Eng. 43, 125–131 (2012)CrossRefGoogle Scholar
  17. 17.
    Rocha, L.S.; Almeida, Â.; Nunes, C.; Henriques, B.; Coimbra, M.A.; Lopes, C.B.; Pereira, E.: Simple and effective chitosan based films for the removal of Hg from waters: equilibrium, kinetic and ionic competition. Chem. Eng. J. 300, 217–229 (2016)CrossRefGoogle Scholar
  18. 18.
    Maleki, A.; Pajootan, E.; Hayati, B.J.: Ethyl acrylate grafted chitosan for heavy metal removal from wastewater: equilibrium, kinetic and thermodynamic studies. Taiwan Inst. Chem. Eng. 51, 127–134 (2015)CrossRefGoogle Scholar
  19. 19.
    Kolodynska, D.: Chitosan as an effective low-cost sorbent of heavy metal complexes with the polyaspartic acid. Chem. Eng. J. 173, 520–529 (2011)CrossRefGoogle Scholar
  20. 20.
    Edokpayi, J.N.; Odiyo, J.O.; Popoola, E.O.; Alayande, O.S.; Msagati, T.A.: Synthesis and characterization of biopolymeric chitosan derived from land snail shells and it’s potential for \({\rm Pb}^{2+}\) removal from aqueous solution. Materials 8, 8630–8640 (2015)CrossRefGoogle Scholar
  21. 21.
    Kaya, İ.; Bilici, A.; Gul, M.: Schiff base substitute polyphenol and its metal complexes derived from \(o\)-vanillin with 2,3-diaminopyridine: synthesis, characterization, thermal, and conductivity properties. Poly. Adv. Technol. 19, 1154–1163 (2008)CrossRefGoogle Scholar
  22. 22.
    Alakhras, F.; Al-Shahrani, H.; Al-Abbad, E.; Al-Rimawi, F.; Ouerfelli, N.: Removal of Pb(II) metal ions from aqueous solutions using chitosan–vanillin derivatives chelating polymers. Pol. J. Environ. Stud. (2018, In press)Google Scholar
  23. 23.
    Bamgbose, J.T.; Adewuyi, S.; Bamgbose, O.; Adetoye, A.A.: Adsorption kinetics of cadmium and lead by chitosan. Afr. J. Biotechnol. 9, 2560–2565 (2010)Google Scholar
  24. 24.
    Sharma, Y.C.: Thermodynamics of the removal of cadmium by adsorption on indigenous clay. Chem. Eng. J. 145, 64–68 (2008)CrossRefGoogle Scholar
  25. 25.
    WHO: Guidelines for Drinking Water Quality Recommendations, vol. 1, 3rd edn. World Health Organization, Geneva (2008)Google Scholar
  26. 26.
    Zalloum, H.M.; Al-Qodah, Z.; Mubarak, M.S.: Copper adsorption on chitosan-derived schiff bases. J. Macromol. Sci. Part A. 46, 46–57 (2008)CrossRefGoogle Scholar
  27. 27.
    Karthik, R.; Meenakshi, S.: Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan. Chem. Eng. J. 263, 168–177 (2015)CrossRefGoogle Scholar
  28. 28.
    Rangel-Mendez, J.R.; Monroy-Zepeda, R.; Leyva-Ramos, E.; Diaz-Flores, P.E.; Shirai, K.: Chitosan selectivity for removing cadmium(II), copper(II), and lead(II) from aqueous phase: pH and organic matter effect. J. Hazard. Mater. 162, 503–511 (2009)CrossRefGoogle Scholar
  29. 29.
    Boamah, P.O.; Huang, Y.; Hua, M.; Zhang, Q.; Liu, Y.; Onumah, J.; Wang, W.; Song, Y.: Lead removal onto cross-linked low molecular weight chitosan pyruvic acid derivatives. Carbohydr. Polym. 122, 255–264 (2015)CrossRefGoogle Scholar
  30. 30.
    Heidari, A.; Younesi, H.; Mehraban, Z.; Heikkinen, H.: Selective adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution using chitosan–MAA nanoparticles. Int. J. Biol. Macromol. 61, 251–263 (2013)CrossRefGoogle Scholar
  31. 31.
    Karthik, R.; Meenakshi, S.: Facile synthesis of cross linked-chitosan-grafted-polyaniline composite and its Cr(VI) uptake studies. Int. J. Biol. Macromol. 67, 210–219 (2014)CrossRefGoogle Scholar
  32. 32.
    Peng, Q.; Liu, Y.; Zeng, G.; Xu, W.; Yang, C.; Zhang, J.: Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. J. Hazard. Mater. 177, 676–682 (2010)CrossRefGoogle Scholar
  33. 33.
    Vimala, R.; Das, N.: Biosorption of cadmium(II) and lead(II) from aqueous solutions using mushrooms: a comparative study. J. Hazard. Mater. 168, 376–382 (2009)CrossRefGoogle Scholar
  34. 34.
    Rathinam, A.; Maharshi, B.; Janardhanan, S.K.; Jonnalagadda, R.R.; Nair, B.U.: Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass: a kinetic and thermodynamic study. Bioresour. Technol. 101, 1466–1470 (2010)CrossRefGoogle Scholar
  35. 35.
    Ibrahim, M.B.; Sani, S.: Comparative isotherms studies on adsorptive removal of congo red from wastewater by watermelon rinds and neem-tree leaves. Open J. Phys. Chem. 4, 139–146 (2014)CrossRefGoogle Scholar
  36. 36.
    Prakash, N.; Sudha, P.N.; Renganathan, N.G.: Copper and cadmium removal from synthetic industrial wastewater using chitosan and nylon 6. Environ. Sci. Pollut. Res. 19, 2930–2941 (2011)CrossRefGoogle Scholar
  37. 37.
    AL Hamouz, O.C.: Synthesis and characterization of a novel series of cross-linked (phenol, formaldehyde, alkyldiamine) terpolymers for the removal of toxic metal ions from wastewater. Arab. J. Sci. Eng. 41, 119–133 (2016)CrossRefGoogle Scholar
  38. 38.
    Zubieta, C.E.; Messina, P.V.; Luengo, C.; Dennehy, M.; Pieroni, O.; Schulz, P.C.: Reactive dyes remotion by porous TiO\(_2\)-chitosan materials. J. Hazard. Mater. 152, 765–777 (2008)CrossRefGoogle Scholar
  39. 39.
    Al-Arfaj, A.A.; Alakhras, F.; Al-Abbad, E.; Alzamel, N.O.; Al-Omair, N.A.; Ouerfelli, N.: Removal of orange 2G dye from aqueous solutions using \({\rm TiO}_{2}\)-based nanoparticles: isotherm and kinetic studies. Asian J. Chem. 30, 1645–1649 (2018)CrossRefGoogle Scholar
  40. 40.
    Alzboon, K.; Al-Harahsheh, M.; Bani Hani, F.: Waste fly ash-based geopolymer for Pb removal from aqueous solution. J. Hazard. Mater. 188, 414–421 (2011)CrossRefGoogle Scholar
  41. 41.
    Park, S.; Gomez-Flores, A.; Chung, Y. S.; Kim, H.: Removal of cadmium and lead from aqueous solution by hydroxyapatite/chitosan hybrid fibrous sorbent: kinetics and equilibrium studies. J. Chem. 2015, ID 396290 (2015)Google Scholar
  42. 42.
    Zhang, H.; McDowell, R.G.; Martin, L.R.; Qiang, Y.: Selective extraction of heavy and light lanthanides from aqueous solution by advanced magnetic nanosorbents. Appl. Mater. Interfaces. 8, 9523–9531 (2016)CrossRefGoogle Scholar
  43. 43.
    Alakhras, F.: Kinetic studies on the removal of some lanthanide ions from aqueous solutions using amidoxime–hydroxamic acid polymer. J. Anal. Methods Chem. 2018, ID 4058503 (2018)Google Scholar
  44. 44.
    Alakhras, F.; Al-Abbad, E.; Alzamel, N.O.; Abouzeid, F.M.; Ouerfelli, N.: Contribution to modelling the effect of temperature on removal of nickel ions by adsorption on nano-bentonite. Asian J. Chem. 30, 1147–1156 (2018)CrossRefGoogle Scholar
  45. 45.
    Al-Harahsheh, M.; Al Jarrah, M.; Mayyas, M.; Alrebaki, M.: High-stability polyamine/amide-functionalized magnetic nanoparticles for enhanced extraction of uranium from aqueous solutions. J. Taiwan Inst. Chem. Eng. 86, 148–157 (2018)CrossRefGoogle Scholar
  46. 46.
    Al-Harahsheh, M.; Al Zboon, K.; Al-Makhadmeh, L.; Hararah, M.; Mahasneh, M.: Fly ash based geopolymer for heavy metal removal: a case study on copper removal. J. Environ. Chem. Eng. 3, 1669–1677 (2015)CrossRefGoogle Scholar
  47. 47.
    Zhang, G.; Qu, R.; Sun, C.; Ji, C.; Chen, H.; Wang, C.; Niu, Y.: Adsorption for metal ions of chitosan coated cotton fiber. J. Appl. Polym. Sci. 110, 2321–2327 (2008)CrossRefGoogle Scholar
  48. 48.
    Debbaudt, A.L.; Ferreira, M.L.; Gschaider, M.E.: Theoretical and experimental study of \({\rm M}^{2+}\) adsorption on biopolymers. III. Comparative kinetic pattern of Pb, Hg and Cd. Carbohydr. Polym. 56, 321–332 (2004)CrossRefGoogle Scholar
  49. 49.
    Roselló, M.; Poschenrieder, C.; Gunsé, B.; Barceló, J.; Llugany, M.: Differential activation of genes related to aluminium tolerance in two contrasting rice cultivars. J. Inorg. Biochem. 152, 160–6 (2015)CrossRefGoogle Scholar
  50. 50.
    Wang, Y.; Tsang, D.C.W.: Effects of solution chemistry on arsenic (V) removal by low-cost adsorbents. J. Environ. Sci. 25, 2291–2298 (2013)CrossRefGoogle Scholar
  51. 51.
    Itskos, G.; Koutsianos, A.; Koukouzas, N.; Vasilatos, C.: Zeolite development from fly ash and utilizat ion in lignite mine-water treatment. Int. J. Miner. Process. 139, 43–50 (2015)CrossRefGoogle Scholar
  52. 52.
    Repo, E.; Warchol, J.K.; Kurniawan, T.A.; Sillanpää, M.E.T.: Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: kinetic and equilibrium modeling. Chem. Eng. J. 161, 73–82 (2010)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Chemistry, College of ScienceImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia

Personalised recommendations