Erosion-Resistant Enhancement of Anti-oxidation Coatings in Hypersonic Flows of Air Plasma

  • Alexey N. Astapov
  • Boris E. Zhestkov
  • Ivan P. Lifanov
  • Lev N. RabinskiyEmail author
  • Valentina S. Terentieva
Research Article - Chemical Engineering


The problems of creating aircraft are connected to the development of new heat-resistant thermal materials. The paper analyses the possible increase in durability of heat-resistant coatings to erosion in hypersonic streams of air plasma. To achieve this goal, granulation of obtained powders was studied on Fritsch Analysette 22 Micro Tec Plus using the laser diffraction method. The study was conducted using powders of technical silicon KR00, titanium PTOM-1, molybdenum PM 99.95, amorphous boron B-99A, yttrium metal ITM-1. It is established that the absence of films based on amorphous silica leads to an increase in catalyticity of coatings surface in regard to reactions of heterogeneous recombination of dissociated and partially ionized air and consequently to additional heating of the surface. The authors defined rational levels of SiCw in coatings of the Si–TiSi\(_2\)–MoSi\(_2\)–B–Y–SiCw system—up to 15 mass%. In the course of the experiment, there was a decline in the average level of erosion and decrease in deviations from the mean mass loss of samples with coatings, modified by SiCw whisker, compared to basic coatings of respective compositions.


Heat-resistant coatings Erosion loss Hypersonic flow Oxidation Carbon–ceramic composite Whiskers \(\hbox {SiC}_{\mathrm{w}}\) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was performed according to the state order of the Ministry of Education and Science of Russian Federation (order No 9.1077.2017/PCH).


  1. 1.
    Li, Q.; Dong, S.; Wang, Z.; He, P.; Zhou, H.; Yang, J.; Wu, B.; Hu, J.: Fabrication and properties of 3-D \({\rm C}_{{\rm f}}\)/SiC-ZrC composites, using ZrC precursor and polycarbosilane. J. Am. Ceram. Soc. 95(4), 1216–1219 (2012). CrossRefGoogle Scholar
  2. 2.
    Feng, Q.; Wang, Z.; Zhou, H.J.; He, P.; Gao, L.; Kan, Y.M.; Zhang, X.Y.; Ding, Y.S.; Dong, S.: Microstructure analysis of \({{\rm C}}_{{\rm f}}\)/SiC-ZrC composites in both fabrication and plasma wind tunnel testing processes. Ceram. Int. 40(1), 1199–1204 (2014). CrossRefGoogle Scholar
  3. 3.
    Yang, Z.H.; Zhang, H.; Ye, Y.C.: Preparation of \({{\rm C}}_{{\rm f}}\)/HfC composite by reactive meltinfiltration using Hf-based alloy. Mater. Sci. Forum. 816, 126–132 (2015). CrossRefGoogle Scholar
  4. 4.
    Uhlmann, F.; Wilhelmi, C.; Schmidt-Wimmer, S.; Beyer, S.; Badini, C.; Padovano, E.: Preparation and characterization of \({{\rm ZrB}}_{2}\) and TaC containing \({{\rm C}}_{{\rm f}}\)/SiC composites via polymer–infiltration–pyrolysis process. J. Eur. Ceram. Soc. 37(5), 1955–1960 (2017). CrossRefGoogle Scholar
  5. 5.
    Labruquère, S.; Blanchard, H.; Pailler, R.; Naslain, R.: Enhancement of the oxidation resistance of interfacial area in C/C composites. Part I: oxidation resistance of B–C, Si–B–C and Si–C coated carbon fibres. J. Eur. Ceram. Soc. 22(7), 1001–1009 (2002). CrossRefGoogle Scholar
  6. 6.
    Tkachenko, L.A.; Shaulov, AYu; Berlin, A.A.: High-temperature protective coatings for carbon fibers. Inorg. Mater. 48(3), 213–221 (2012). CrossRefGoogle Scholar
  7. 7.
    Xia, K.; Lu, C.; Yang, Y.: Improving the oxidation resistance of carbon fibers using silicon oxycarbide coatings. New Carbon Mater. 30(3), 236–243 (2015). CrossRefGoogle Scholar
  8. 8.
    Kumar, K.; Jariwala, C.; Pillai, R.; Chauhan, N.; Raole, P.M.: Preparation & characterization of \({{\rm SiO}}_{2}\) interface layer by dip coating technique on carbon fibre for \({{\rm C}}_{{\rm f}}\)/SiC composites. In: AIP Conference Proceedings. 1675, 020046-1–020046-4 (2015).
  9. 9.
    Molev, G.V.; Mirzabekyants, N.S.: The ways to increase resistance of carbon materials to oxidation in the open air at elevated temperatures. Khimiya Tverdogo Topliva 1, 89–100 (1998)Google Scholar
  10. 10.
    Yang, Y.-Z.; Yang, J.-L.; Fang, D.-N.: Research progress on thermal protection materials and structures of hypersonic vehicles. Appl. Math. Mech. 29(1), 51–60 (2008). CrossRefzbMATHGoogle Scholar
  11. 11.
    Astapov, A.N.; Terent’eva, V.S.: High-temperature microcomposite thin-layer coatings with the micro-, submicro-, and nanoscale structure of oxide layers. Inorg. Mater. 47(15), 1640–1648 (2011). CrossRefGoogle Scholar
  12. 12.
    Terentieva, V.S.; Eremina, A.I.; Astapov, A.N.: Influence of the architecture and elemental-chemical composition on the structure and properties of carbonaceous composite materials. Compos.: Mech. Comput. Appl. 2(3), 247–270 (2011). CrossRefGoogle Scholar
  13. 13.
    Astapov, A.N.: Heat-resistant non-fired repair coatings for protection of carbon-base materials. Nanomech. Sci. and Tech.: An Int. J. 5(4), 267–285 (2014). CrossRefGoogle Scholar
  14. 14.
    Terentieva, V.S.; Astapov, A.N.; Eremina, A.I.: An analysis of promising antioxidant coatings on heat-resistant carbon-containing composite materials (A review). Korroz.: Mater. Zashchita 1, 30–42 (2014)Google Scholar
  15. 15.
    Astapov, A.N.; Terent’eva, V.S.: Review of domestic designs in the field of protecting carbonaceous materials against gas corrosion and erosion in high-speed plasma fluxes. Russ. J. Non-Ferrous Met. 57(2), 157–173 (2016). CrossRefGoogle Scholar
  16. 16.
    Zmij, V.I.; Rudenkyi, S.G.; Shepelev, A.G.: Complex protective coatings for graphite and carbon–carbon composite materials. Mater. Sci. Appl. 6(10), 879–888 (2015). CrossRefGoogle Scholar
  17. 17.
    Yang, Y.; Li, K.; Liu, G.; Zhao, Z.: Ablation-resistant composite coating of HfC–TaC–SiC for C/C composites deposited by supersonic atmospheric plasma spraying. J. Ceram. Sci. and Technol. 7(4), 379–386 (2016). CrossRefGoogle Scholar
  18. 18.
    Terentieva, V.S.; Bogachkova, O.P.; Goriatcheva, E.V.: Russian Federation Patent 1 2082824, \({{\rm MPK}}^{6}\) C 23 C 24/10. Method to protect heat-resistant materials against action of corrosive environment of high-speed gas flows (versions). Applicant and patent holder Moscow Aviation Institute (National Research University). No 94008267/02; applied 10.03.1994; published 27.06.1997Google Scholar
  19. 19.
    Terentieva, V.S.; Eremina, A.I.; Zhestkov, B.E.; Astapov, A.N.: Russian Federation Patent 1 2437961, MPK C23C 10/26 (2006.01), C23C 24/08 (2006.01). Method to recover high-temperature silicon-containing protective coating on heat-resistant structional materials. Applicant and patent holder Moscow Aviation Institute (National Research University). No 2010132004/02; applied 29.07.2010; published 27.12.2011Google Scholar
  20. 20.
    Terentieva, V.S.; Bogachkova, O.P.; Goriatcheva, E.V.: Method for protecting products made of a refractory material against oxidation, and resulting protected products. EPO Patent No EP0703883 B1; (1996)Google Scholar
  21. 21.
    Terentieva, V.S.; Bogachkova, O.P.; Goriatcheva, E.V.: Method for protecting products made of a refractory material against oxidation, and resulting protected products. US Patent No 5677060; (1997)Google Scholar
  22. 22.
    Bondar, A.; Lukas, H.L.: Mo–Si–Ti (Molybdenum–Silicon–Titanium). Landolt-Börnstein. Group IV: Phys. Chem. 11A4, 385–405 (2006). CrossRefGoogle Scholar
  23. 23.
    Zhestkov, B.E.; Shtapov, V.V.: Investigation of material condition in a hypersonic plasma flow. Zavod. Lab. Diagn. Mater. 82(12), 58–65 (2016)Google Scholar
  24. 24.
    Zhestkov, B.E.: Investigation of thermo-chemical stability of heat-shielding materials. Uchenye Zapiski TsAGI XLV(5), 62–77 (2014)Google Scholar
  25. 25.
    Simamura, S.; Sindo, A.; Kotsuka, K.: Carbon Fibers. Mir Publisher, Moscow (1987)Google Scholar
  26. 26.
    Babichev, A.P.; Babushkina, N.A.; Bratkovsky, A.M.: Phys. Quantities. A Handbook. Energoatomizdat, Moscow (1991)Google Scholar
  27. 27.
    Zhestkov, B.E.: A set of stands with induction gas heaters. Vestn. Kazan. Tekhnol. Univ. 14(19), 63–69 (2011)Google Scholar
  28. 28.
    Opeka, M.M.; Talmy, I.G.; Zaykoski, J.A.: Oxidation-based materials selection for 2000 C + hypersonic aerosurfaces: theoretical considerations and historical experience. J. Mater. Sci. 39(19), 5887–5904 (2004). CrossRefGoogle Scholar
  29. 29.
    Kovalev, V.L.: Heterogeneous Catalytic Processes in Aerothermodynamics. FIZMATLIT, Moscow (2002)Google Scholar
  30. 30.
    Schifino, A.R.M.; Sant’anna, F.R.; Trindade, A.P.: Austempering heat treatment study of cast ductile iron: analysis of mechanical and microstructural properties, according to the A897M standard specifications for austempered ductile iron casting. Periódico Tchê Química. 15(29), 64–74 (2018)Google Scholar
  31. 31.
    Terentieva, V.S.; Astapov, A.N.; Eremina, A.I.: Russian Federation Patent 1 2522552, MPK C04V 41/88 (2006.01), C23C 14/14 (2006.01), C23C 30/00 (2006.01). Method to produce material for high-temperature erosion-resistant protective coating. Applicant and patent holder Moscow Aviation Institute (National Research University). No 2012146451/03; applied 01.11.2012; published 20.07.2014Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Alexey N. Astapov
    • 1
  • Boris E. Zhestkov
    • 2
  • Ivan P. Lifanov
    • 1
  • Lev N. Rabinskiy
    • 1
    Email author
  • Valentina S. Terentieva
    • 1
  1. 1.Department of Material SciencesMoscow Aviation Institute (National Research University)MoscowRussian Federation
  2. 2.Laboratory Modeling of flight conditions of Apparatus with hypersonic speedsN.E. Zhukovsky Central Aerohydrodynamic InstituteZhukovskyRussian Federation

Personalised recommendations