Studies on the Variation in Performance of Different Types of Asphalts Produced from the Same Oil Source

  • Fenglei Zhang
  • Jianping Xiong
  • Muhammad Yaseen
  • Lihua Gan
  • Qihang Chen
  • Yuhua Yin
  • Jing Yang
  • Jing LiEmail author
Research Article - Civil Engineering


The 50A and 70A asphalts produced by the same oil source have great differences in macroscopic properties. However, Fourier transform infrared spectra of 50A and 70A asphalts are almost identical with no differentiation in fingerprint region which offers great difficulty in bifurcation in chemical compositions of the two types of asphalts. To cope with these deficiencies, this study is aimed to investigate the composition and micro-performance of 50A and 70A asphalts via other unequivocal techniques including elemental analysis, scanning electron microscopy, fluorescence microscopy, X-ray diffraction analysis, gel permeation chromatography and nuclear magnetic resonance spectroscopy. Through these analyses, it was found that high temperature sensitive property, i.e., low penetration index of 50A asphalt was due to its higher contents of alkane moieties. Similarly, the dynamic viscosity of 50A asphalt was much higher than that of 70A asphalt due to larger relative molecular weight, high aromatic carbon contents and more aromatic rings in the former. This study systematically explained the reasons responsible for the differences in the macroscopic phenomena of different types of asphalts produced from the same oil source, which can establish a bridge between the macro-test results and microscopic properties of asphalt and hence can best analyze asphalt produced from the same oil source resulting in collection of broader and diverse information.


50A/70A asphalt Micro-analysis Macro-analysis High temperature sensitivity Penetration index 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work was supported by the National Natural Science Foundation of China (Grant No. 51768007), Guangxi Natural Science Foundation Program (Grant No. 2017GXNSFBA198185), Guangxi Traffic Science Research Institute Project (Grant No. 2017gxjgclkf003).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Abbas, A.R.; Papagiannakis, A.T.; Masad, E.A.: Linear and nonlinear viscoelastic analysis of the microstructure of asphalt concretes. J. Mater. Civ. Eng. 16(16), 133–139 (2004)CrossRefGoogle Scholar
  2. 2.
    Li, J.; Hou, D.; Shiying, D.; Guo, X.; Liu, Y.; Wu, C.: An IR and pyrolysis-gas chromatography/mass spectrometry microscopic analysis on the asphalt aging mechanism. J. Comput. Theor. Nanosci. 14(2), 859–864 (2017)CrossRefGoogle Scholar
  3. 3.
    Sun, D.Q.; Zhang, L.W.; Zhang, X.L.: Quantification of SBS content in SBS polymer modified asphalt by FTIR. Adv. Mater. Res. 287–290, 953–960 (2011)CrossRefGoogle Scholar
  4. 4.
    Wang, T.; Huang, X.; Zhang, Y.: Application of Hansen solubility parameters to predict compatibility of SBS-modified bitumen. J. Mater. Civ. Eng. 22(8), 773–778 (2010)CrossRefGoogle Scholar
  5. 5.
    Zhang, C.; Yang, J.; Xue, Y.; Li, Y.: Group type analysis of asphalt by column liquid chromatography. Liq. Fuels Technol. 26(6), 665–673 (2008)Google Scholar
  6. 6.
    Nciri, N.; Cho, N.: Structural comparison of Gilsonite and Trinidad Lake Asphalt using 13C-NMR technique, vol. 191 no. (1), p. 012042 (2017)Google Scholar
  7. 7.
    Abdelhak, B.; Abdelmadjid, H.C.; Mohamed, G.; Hamza, G.: Effect of recycled asphalt aggregates on the rutting of bituminous concrete in the presence of additive. Arab. J. Sci. Eng. 41(10), 4139–4145 (2016)CrossRefGoogle Scholar
  8. 8.
    Feng, M.A.; Zhi-Peng, F.U.; Sha, A.M.; Zhen, F.U.; Zhang, W.W.: Thermal property and micro structure analysis on asphalt modified with natural asphalt. China J. Highw. Transp. 28(6), 12–17 (2015)Google Scholar
  9. 9.
    Mahmoud, S.A.: Case analysis of royal dutch/shell group of companies. (2005)Google Scholar
  10. 10.
    Hadiwardoyo, S.P.; Sinaga, E.S.; Fikri, H.: The influence of Buton asphalt additive on skid resistance based on penetration index and temperature. Constr. Build. Mater. 42(9), 5–10 (2013)CrossRefGoogle Scholar
  11. 11.
    Mikhailenko, P.; Kadhim, H.; Baaj, H.; Tighe, S.: Observation of asphalt binder microstructure with ESEM. J. Microsc. 267(3), 347 (2017)CrossRefGoogle Scholar
  12. 12.
    Hasan, M.M.; Islam, M.R.; Tarefder, R.A.: Characterization of subgrade soil mixed with recycled asphalt pavement. J. Traffic Transp. Eng. (2018)Google Scholar
  13. 13.
    Zhang, F.; Li, J.; Yaseen, M.; Han, M.; Yin, Y.; Yang, S.: Preparation methods and performance of modified asphalt using rubber-plastic alloy and its compounds. J. Mater. Civ. Eng. 30(8), 04018163 (2018)CrossRefGoogle Scholar
  14. 14.
    Yin, Y.; Muhammad, Y.; Zeng, X.; Yang, J.; Li, J.; Yang, S.; Zhao, Z.; Subhan, S.: Synthesis and properties of octadecylamine-graphene oxide modified highly hydrophobic waterborne polyurethane emulsion. Prog. Org. Coat. 125, 234–241 (2018)CrossRefGoogle Scholar
  15. 15.
    Zhang, F.; Muhammad, Y.; Liu, Y.; Han, M.; Yin, Y.; Hou, D.; Li, J.: Measurement of water resistance of asphalt based on surface free energy analysis using stripping work between asphalt-aggregate system. Constr. Build. Mater. 176, 422–431 (2018)CrossRefGoogle Scholar
  16. 16.
    Hou, D.; Han, M.; Muhammad, Y.; Liu, Y.; Zhang, F.; Yin, Y.; Duan, S.; Li, J.: Performance evaluation of modified asphalt based trackless tack coat materials. Constr. Build. Mater. 165, 385–394 (2018)CrossRefGoogle Scholar
  17. 17.
    Li, Y.; Wu, S.; Amirkhanian, S.: Investigation of the graphene oxide and asphalt interaction and its effect on asphalt pavement performance. Constr. Build. Mater. 165, 572–584 (2018)CrossRefGoogle Scholar
  18. 18.
    Han, M.; Li, J.; Muhamma, Y.; Hou, D.; Zhang, F.; Yin, Y.; Duan, S.: Effect of polystyrene grafted graphene nanoplatelets on the physical and chemical properties of asphalt binder. Constr. Build. Mater. 174, 108–119 (2018)CrossRefGoogle Scholar
  19. 19.
    You, Z.; Adhikari, S.; Kutay, M.E.: Dynamic modulus simulation of the asphalt concrete using the x-ray computed tomography images. Mater. Struct. 42(5), 617–630 (2009)CrossRefGoogle Scholar
  20. 20.
    Lim, L.B.L.; Priyantha, N.; Chan, C.M.; Matassan, D.; Chieng, H.I.; Kooh, M.R.R.: Adsorption behavior of methyl violet 2B using duckweed: equilibrium and kinetics studies. Arab. J. Sci. Eng. 39(9), 6757–6765 (2014)CrossRefGoogle Scholar
  21. 21.
    Han, M.; Li, J.; Muhammad, Y.; Yin, Y.; Yang, J.; Yang, S.; Duan, S.: Studies on the secondary modification of SBS modified asphalt by the application of octadecyl amine grafted graphene nanoplatelets as modifier. Diam. Relat. Mater. 89, 140–150 (2018)CrossRefGoogle Scholar
  22. 22.
    Kim, K.W.; Lee, S.; Amirkhanian, S.N.: Estimation of rutting characteristics of waste tire rubber-modified asphalt binder using GPC. Wit Trans. Built Environ. 89, 463–473 (2006)Google Scholar
  23. 23.
    Huang, J.: Characterization of asphalt fractions by NMR spectroscopy. Liquid Fuels Technol. 28(6), 618–624 (2010)Google Scholar
  24. 24.
    Sureshkumar, M.S.; Filippi, S.; Polaccoa, G.; Stastna, J.; Zanzotto, L.: Internal structure and linear viscoelastic properties of EVA/asphalt nanocomposites. Eur. Polym. J. 46(4), 621–633 (2010)CrossRefGoogle Scholar
  25. 25.
    Sun, D.; Yu, F.; Li, L.; Lin, T.; Zhu, X.Y.: Effect of chemical composition and structure of asphalt binders on self-healing. Constr. Build. Mater. 133, 495–501 (2017)CrossRefGoogle Scholar
  26. 26.
    Cardozo, F.B.; Moreno, E.A.; Trujillo, C.A.: Structural characterization of unfractionated asphalts by 1H NMR and 13C NMR. Energy Fuels 30(4), 2729–2740 (2016)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringGuangxi UniversityNanningChina
  2. 2.Guangxi Key Laboratory of Road structure and MaterialsNanningChina
  3. 3.Institute of Chemical SciencesUniversity of PeshawarPeshawarPakistan
  4. 4.Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification TechnologyGuangxi UniversityNanningChina

Personalised recommendations