Advertisement

Passenger Satisfaction Evaluation of Public Transportation in Istanbul by Using Fuzzy Quality Function Deployment Methodology

  • Özge Nalan Bilişik
  • Şükran Şeker
  • Nezir Aydın
  • Nihan Güngör
  • Hayri Baraçlı
Research Article - Systems Engineering
  • 5 Downloads

Abstract

Quality Function Deployment (QFD) is known as a planning process and methodology that helps companies for listening voice of customers. This process assists company to produce new or improve current products and services according to voice of customers. QFD provides this by transforming voice of customers into the technical language of the company. The aim of this study is to increase service quality and passenger satisfaction by listening voice of passengers, determining their requirements, and integrating these requirements into public transportation services properly. On the other hand, the nature of uncertainty and subjectivity in service delivery processes makes difficult employing QFD effectively. Thus, fuzzy QFD methodology is applied to evaluate public transportation firms in Istanbul including BRT, IETT, Otobus Inc., and Private Busses. At the end of the study, conclusions and discussions are drawn concerning the requirements of passengers to reduce the complaints and improve public transportation services quality.

Keywords

Fuzzy QFD Public transportation Passenger requirements Passenger satisfaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13369_2018_3576_MOESM1_ESM.pdf (298 kb)
Supplementary material 1 (pdf 297 KB)

References

  1. 1.
    Rao, K.C.A.; Thakar, G.: Enhancement of customer satisfaction by QFD in bus service. Int. J. Adv. Comput. Theory Eng. (IJACTE) 2(5), 2319–2526. ISSN (Print) (2013)Google Scholar
  2. 2.
    Awasthi, A.; Chauhan, S.; Omrani, H.: Application of fuzzy TOPSIS in evaluating sustainable transportation systems. Expert Syst. Appl. 38(10), 12270–12280 (2011a)CrossRefGoogle Scholar
  3. 3.
    Lovelock, C.; Wirtz, J.: Complaint Handling and Service Recovery. Services Marketing: People Technology, Strategy. Pearson, Upper Saddle River (2010)Google Scholar
  4. 4.
    Rosander, A.C.: The Quest for Quality in Services. Quality Press, Milwaukee (1989)Google Scholar
  5. 5.
    Apostolopoulou, E.; Nellas, G.; Ganoudis, D.; Marinaki, A: Understanding quality needs and expectations of potential metro users in Athens. In: European Transport Conference, pp. 71–82 (2000)Google Scholar
  6. 6.
    Iseki, H.; Taylor, B. D: Style versus service? An analysis of user perceptions of transit stops and stations in Los Angeles. In: 87th Annual Meeting of the TRB, Washington, DC, pp. 13–17 (2008)Google Scholar
  7. 7.
    Miller, M.: Improving customer service and satisfaction at London underground. Manag. Serv. Qual. 5(1), 26–29 (1995)CrossRefGoogle Scholar
  8. 8.
    Said, H.: Evaluation method of service quality parameters in transport networks. In: Proceedings of the 5th Biannual World Automation Congress, vol. 14, pp. 21–26. ISBN: 1-889335-18-5 (2002)Google Scholar
  9. 9.
    Eboli, L.; Mazulla, G.: Performance indicators for an objective measure of public transport service quality, Transport\(\backslash \)Trasporti Europei, 51(3). ISSN 1825-3997 (2011)Google Scholar
  10. 10.
    Celik, E.; Bilisik, O.N.; Erdogan, M.; Gumus, A.T.; Baracli, H.: An integrated novel interval type-2 fuzzy MCDM method to improve customer satisfaction in public transportation for Istanbul. Transp. Res. E 58, 28–51 (2013)CrossRefGoogle Scholar
  11. 11.
    Hassan, M.N.; Hawas, Y.E.; Ahmed, K.: A multi-dimensional framework for evaluating the transit service performance. Transp. Res. Part A: Policy Pract. 50, 47–61 (2013)Google Scholar
  12. 12.
    Zak, J.: The methodology of multiple criteria decision making/aiding in public transportation. J. Adv. Transp. 45, 1–20 (2011)CrossRefGoogle Scholar
  13. 13.
    dell’Olio, L.; Ibeas, A.; Cecin, P.: The quality of service desired by public transport users. Transp. Policy 18, 217–227 (2011)CrossRefGoogle Scholar
  14. 14.
    Stradling, S.; Carreno, M.; Rye, T.; Noble, A.: Passenger perceptions and ideal urban bus journey experience. Transp. Policy 14, 283–292 (2007)CrossRefGoogle Scholar
  15. 15.
    Pantouvakis, A.; Lymperopoulos, K.: Customer satisfaction and loyalty in the eyes of new and repeat customers. Manag. Serv. Qual. 18(6), 623–643 (2008)CrossRefGoogle Scholar
  16. 16.
    Eboli, L.; Mazzulla, G.: A new customer satisfaction index for evaluating transit service quality. J. Public Transp. 12(3), 21–37 (2009)CrossRefGoogle Scholar
  17. 17.
    Zineldin, M.: Quality and customer relationship management as competitive strategy in the Swedish industry. TQM Mag. 17(4), 329–344 (2005)CrossRefGoogle Scholar
  18. 18.
    Zheng, L.; Jiaqing, W.: Summary of the application effect of bus rapid transit at Beijing south-centre corridor of China. J. Transp. Syst. Eng. Inf. Technol. 7(4), 137–142 (2007)Google Scholar
  19. 19.
    Pucher, J.; Korattyswaropam, N.; Mittal, N.; Ittyerah, N.: Urban Transport Crisis in India. World Transit Research, Clayton (2005)Google Scholar
  20. 20.
    Agarwal, R.: Public transportation and customer satisfaction: the case of Indian Railways. Glob. Bus. Rev. 9(2), 257–272 (2008)CrossRefGoogle Scholar
  21. 21.
    Hensher, D.A.; Stopher, P.; Bullock, P.: Service quality-developing a service quality index in the provision of commercial bus contracts. Transp. Res. Part A: Policy Pract. 37(6), 499–517 (2003)Google Scholar
  22. 22.
    Tyrinopoulos, Y.; Antoniou, C.: Public transit user satisfaction: variability and policy implications. Transp. Policy 15(4), 260–272 (2008)CrossRefGoogle Scholar
  23. 23.
    Eboli, L.; Mazzulla, G.: A stated preference experiment for measuring service quality in public transport. Transp. Plan. Technol. 31(5), 509–523 (2008)CrossRefGoogle Scholar
  24. 24.
    Swanson, J.; Ampt, L.; Jones, P.: Measuring bus passenger preferences. Traffic Eng. Control 38(6), 330336 (1997)Google Scholar
  25. 25.
    Celik, E.; Aydin, N.; Gumus, A.: A multiattribute customer satisfaction evaluation approach for rail transit network: a real case study for Istanbul, Turkey. Transp. Policy 36, 283–293 (2014)CrossRefGoogle Scholar
  26. 26.
    Awasthi, A.; Chauhan, S.S.; Goyal, S.K.: A multi-criteria decision making approach for location planning for urban distribution centers under uncertainty. Math. Comput. Model. 53, 98–109 (2011b)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Akao, Y.: Quality Function Deployment. Productivity Press, Cambridge (1990)Google Scholar
  28. 28.
    Behestina, M.; Azad, M.: A fuzzy QFD approach using SERVQUAL and Kano models under budget constraint for hotel services. Total Qual. Manag. Bus. Excell. (2017).  https://doi.org/10.1080/14783363.2017.1340830 CrossRefGoogle Scholar
  29. 29.
    Kwong, C.K.; Bai, H.: Determining the importance weights for the customer requirements in QFD using a fuzzy AHP with an extent analysis approach. IIE Trans. 35, 619–626 (2003)CrossRefGoogle Scholar
  30. 30.
    Zadeh, L.: Fuzzy sets. Inf. Control. 8, 338–353 (1965)CrossRefGoogle Scholar
  31. 31.
    Chougul, R.; Khare, V.; Pattada, K.: A fuzzy logic based approach for modeling quality and reliability related customer satisfaction in the automotive domain. Expert Syst. Appl.: Int. J. Arch. 40(2), 800–810 (2013)CrossRefGoogle Scholar
  32. 32.
    Skorrupski, J.; Uchoronski, P.: A fuzzy system to support the configuration of baggage screening devices at an airport. Expert Syst. Appl. (2016).  https://doi.org/10.1016/j.eswa.2015.08.032 CrossRefGoogle Scholar
  33. 33.
    Kurtulmusoglu, F.; Pakdil, F.; Atalay, K.: Quality improvement strategies of highway bus service based on a fuzzy quality function deployment approach. Transportmetrica A: Transp. Sci. 12(2), 175–202 (2015).  https://doi.org/10.1080/23249935.2015.1117535 CrossRefGoogle Scholar
  34. 34.
    Tanaka, H.; Uejima, S.; Asai, K.: Linear regression analysis with fuzzy model. IEEE Trans. SMC 12, 903–907 (1982)zbMATHGoogle Scholar
  35. 35.
    Gharpuray, M.; Tanaka, H.; Fan, L.; Lai, F.: Fuzzy linear regression analysis of cellulose hydrolysis. Chem. Eng. Commun. 41, 299–314 (1986)CrossRefGoogle Scholar
  36. 36.
    Heshmaty, B.; Kandel, A.: Fuzzy linear regression and its applications to forecasting in uncertain environment. Fuzzy Sets Syst. 15, 159–191 (1985)CrossRefGoogle Scholar
  37. 37.
    Kim, K.J.; Moskowitz, H.; Dhingra, A.; Evans, G.: Theory and methodology fuzzy multicriteria models for quality function deployment. Eur. J. Oper. Res. 121, 504–518 (2000)CrossRefGoogle Scholar
  38. 38.
    Radharamanan, R.; Juang, J.-N.; Felix, C. J. A. K.: Service quality in a collective urban transportation system. In: IEEE International Sympossium on Service-Oriented System Engineering, IEEE Computer Society Conference Publishing Services (CPS), Piscataway, NJ, pp. 227–233 (2008)Google Scholar
  39. 39.
    Hopwood, II, T.; Mazur, G. H.: Context sensitive solutions: the application of QFD for developing public transportation projects in the U.S. In: 19th Symposium on QFD and 13th International Symposium (2007)Google Scholar
  40. 40.
    Sezhian M.; Muralidharan C.; Desmukh S. : A Conceptual model to achieve operational excellence in a public sector bus transport company: a research paper. Prabandhan: Indian. J. Manag. (2012). https://doi.org/10.17010/pijom/2012/v5i9/60251 CrossRefGoogle Scholar
  41. 41.
    Bulut, E.; Duru, O.; Huang, S.: A multidimensional QFD design for the service quality assessment of Kansai International Airport, Japan. Total Qual. Manag. Bus. Excell. 29(1–2), 202–224 (2018)CrossRefGoogle Scholar
  42. 42.
    Martins, V.; Filho, H.; Soares, D.: The use of the Quality Function Deployment (QFD) for analysis and improvement of the public transportation service. Syst. Manag. 11(2016), 31–48 (2016)Google Scholar
  43. 43.
    Kayapınar, S.; Erginel, N.: Designing the airport service with fuzzy QFD based on SERVQUAL integrated with a fuzzy multi-objective decision model. Total Qual. Manag. (2017).  https://doi.org/10.1080/14783363.2017.1371586 CrossRefGoogle Scholar
  44. 44.
    Isikli, E.; Aydin, N.; Celik, E.; Gumus, A.: Identifying key factors of rail transit service quality: an empirical analysis for Istanbul. J. Public Transp. 20(1), 4 (2017)CrossRefGoogle Scholar
  45. 45.
    Aydin, N.: A fuzzy-based multi-dimensional and multi-period service quality evaluation outline for rail transit systems. Transp. Policy 55, 87–98 (2017)CrossRefGoogle Scholar
  46. 46.
    Gonza’lez, M.; Quesada, g; Bahill, A.: Improving product design using quality function deployment: the school furniture case in developing countries. Qual. Eng. 16(1), 47–58 (2003)Google Scholar
  47. 47.
    Lin, L.Z.; Chen, W.C.; Chang, T.J.: Using FQFD to analyze island accommodation management in fuzzy linguistic preferences. Expert Syst. Appl. 38, 7738–7745 (2011)CrossRefGoogle Scholar
  48. 48.
    IETT Survey (2014). http://www.iett.gov.tr/tr/main/pages/arastirma-raporlari/16. Accessed 28 Nov 2016
  49. 49.
    Li, Q.: A novel likert scale based on fuzzy sets theory. Expert Syst. Appl. 40(5), 1609–1618 (2013)CrossRefGoogle Scholar
  50. 50.
    Lu, C.; Lin, L.; Yeh, H.: A multi-phased FQFD for the design of brand revitalisation. Total Qual. Manag. Bus. Excell. (2017).  https://doi.org/10.1080/14783363.2017.1343139 CrossRefGoogle Scholar
  51. 51.
    Pakdil, F.; Kurtulmusoglu, F.: Improving service quality in highway passenger transportation: a case study using quality function deployment. EJTIR 14(4), 375–393 (2014)Google Scholar
  52. 52.

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Özge Nalan Bilişik
    • 1
  • Şükran Şeker
    • 1
  • Nezir Aydın
    • 1
  • Nihan Güngör
    • 1
  • Hayri Baraçlı
    • 1
    • 2
  1. 1.Department of Industrial EngineeringYildiz Technical UniversityBesiktas-IstanbulTurkey
  2. 2.Istanbul Metropolitan MunicipalitySehzadebasiTurkey

Personalised recommendations