Arabian Journal for Science and Engineering

, Volume 44, Issue 8, pp 6693–6709 | Cite as

Modified Spatial Modulation: An Alternate to Spatial Multiplexing for 5G-Based Compact Wireless Devices

  • Vinoth Babu Kumaravelu
  • Gaurav Jaiswal
  • Vishnu Vardhan Gudla
  • G. Ramachandra Reddy
  • Arthi MurugadassEmail author
Research Article - Electrical Engineering


Spatial modulation (SM) is a spectrum and energy-efficient simple digital modulation scheme, which uses the transmitter antenna indices to convey the additional bits. The conventional SM variants have high complex receivers and offer poor performance under spatially correlated and line-of-sight (LOS) channel conditions. In this work, a new variant, modified spatial modulation (MSM) for \(8 \times 8\) multiple input multiple output (MIMO) configuration is proposed, which uses one or two transmitter antennas based on the incoming bit patterns. The adaptive mapping used at the transmitter side for antenna selection and modified maximum likelihood (ML) detection used at the receiver side reduces the computational complexity. Every possible bit per channel use (bpcu) is mapped to a unique transmit symbol vector, which minimizes the receiver complexity, while combating the effect of spatial correlation. Through simulation results, it is observed that the average bit error rate (ABER) performance of the MSM-ML scheme is much better than that of the conventional SM-ML, generalized spatial modulation (GSM)-ML and redesigned spatial modulation (ReSM)-ML schemes under spatially correlated and LOS channel conditions. The promising results prove that the proposed scheme can be a better alternative to spatial multiplexing (SMX) in battery-driven compact handheld devices, which can be used for international mobile telecommunication-2020 (IMT-2020).


Average bit error rate (ABER) International Mobile Telecommunication (IMT)-2020 Maximum likelihood (ML) detection Modified spatial modulation (MSM) Spatial modulation (SM) Spectral efficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basar, E.; Wen, M.; Mesleh, R.; Di Renzo, M.; Xiao, Y.; Haas, H.: Index modulation techniques for next-generation wireless networks. IEEE Access 5, 16693–16746 (2017)CrossRefGoogle Scholar
  2. 2.
    Agiwal, M.; Saxena, N.; Roy, A.: Ten commandments of emerging 5G networks. Wirel. Pers. Commun. (2017). Google Scholar
  3. 3.
    Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.; Zhang, J.C.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)CrossRefGoogle Scholar
  4. 4.
    Rappaport, T.S.; Roh, W.; Cheun, K.: Wireless engineers long considered high frequencies worthless for cellular systems. They couldn’t be more wrong. IEEE Spectr. 51(9), 34 (2014)CrossRefGoogle Scholar
  5. 5.
    GSMA Intelligence: Understanding 5G: perspectives on future technological advancements in mobile. White paper, pp. 1–26 (2014)Google Scholar
  6. 6.
    Chen, S.; Zhao, J.: The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication. IEEE Commun. Mag. 52(5), 36–43 (2014)CrossRefGoogle Scholar
  7. 7.
    Prasad, R.: 5G: 2020 and beyond. River Publishers, Seattle (2014)Google Scholar
  8. 8.
    Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H.; Dutta, S.; Sabella, D.: On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration. IEEE Commun. Surv. Tutor. 19(3), 1657–1681 (2017)CrossRefGoogle Scholar
  9. 9.
    Jagannatham, A.K.: Principles of Modern Wireless Communication Systems. McGraw-Hill Education, London (2015)Google Scholar
  10. 10.
    Basar, E.: Index modulation techniques for 5G wireless networks. IEEE Commun. Mag. 54(7), 168–175 (2016)CrossRefGoogle Scholar
  11. 11.
    Mesleh, R.Y.: Spatial modulation: a spatial multiplexing technique for efficient wireless data transmission. Doctoral dissertation, Jacobs University Bremen (2007)Google Scholar
  12. 12.
    Öztürk, E.; Basar, E.; Crpan, H.A.: Spatial modulation GFDM: a low complexity MIMO-GFDM system for 5G wireless networks. In: 2016 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), pp. 1–5. IEEE (2016)Google Scholar
  13. 13.
    Mesleh, R.Y.; Haas, H.; Sinanovic, S.; Ahn, C.W.; Yun, S.: Spatial modulation. IEEE Trans. Veh. Technol. 57(4), 2228–2241 (2008)CrossRefGoogle Scholar
  14. 14.
    Liu, X.; Wesel, R.D.: Pro le Optimal 8-QAM and 32-QAM Constellations. In: Thirty-Sixth Annual Allerton Conference on Communications, Control, and Computing (1998)Google Scholar
  15. 15.
    Lee, H.; Lee, B.; Lee, I.: Iterative detection and decoding with an improved V-BLAST for MIMO-OFDM systems. IEEE J. Sel. Areas Commun. 24(3), 504–513 (2006)CrossRefGoogle Scholar
  16. 16.
    Canbilen, A.E.; Alsmadi, M.M.; Basar, E.; Ikki, S.S.; Gultekin, S.S.; Develi, I.: Spatial modulation in the presence of I/Q imbalance: optimal detector and performance analysis. IEEE Commun. Lett. 22, 1572–1575 (2018)CrossRefGoogle Scholar
  17. 17.
    Younis, A.; Serafimovski, N.; Mesleh, R.; Haas, H.: Generalized spatial modulation. In: 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp. 1498–1502. IEEE (2010)Google Scholar
  18. 18.
    Younis, A.: Spatial Modulation: Theory to Practice. University of Edinburgh, Edinburgh (2014)Google Scholar
  19. 19.
    Mesleh, R.; Ikki, S.S.; Aggoune, H.M.: Quadrature spatial modulation. IEEE Trans. Veh. Technol. 64(6), 2738–2742 (2015)CrossRefGoogle Scholar
  20. 20.
    Afana, A.; Atawi, I.; Ikki, S.; Mesleh, R.: Energy efficient quadrature spatial modulation MIMO cognitive radio systems with imperfect channel estimation. In: 2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), pp. 1–5. IEEE (2015)Google Scholar
  21. 21.
    Li, J.; Jiang, X.; Yan, Y.; Yu, W.; Song, S.; Lee, M.H.: Low complexity detection for quadrature spatial modulation systems. Wirel. Pers. Commun. 95(4), 4171–4183 (2017)CrossRefGoogle Scholar
  22. 22.
    Mesleh, R.; Ikki, S.S.; Aggoune, H.M.: Quadrature spatial modulation performance analysis and impact of imperfect channel knowledge. Trans. Emerg. Telecommun. Technol. 28(1), e2905 (2017)CrossRefGoogle Scholar
  23. 23.
    Luna-Rivera, J.M.; Gonzalez-Perez, M.G.: An improved spatial modulation scheme for MIMO channels. In: 2012 6th European Conference on Antennas and Propagation (EUCAP), pp. 1–5. IEEE (2012)Google Scholar
  24. 24.
    Cheng, C.C.; Sari, H.; Sezginer, S.; Su, Y.T.: Enhanced spatial modulation with multiple constellations. In: 2014 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), pp. 1–5. IEEE (2014)Google Scholar
  25. 25.
    Cheng, C.C.; Sari, H.; Sezginer, S.; Su, Y.T.: Enhanced spatial modulation with multiple signal constellations. IEEE Trans. Commun. 63(6), 2237–2248 (2015)CrossRefGoogle Scholar
  26. 26.
    Tang, Q.; Xiao, Y.; Yang, P.; Yu, Q.; Li, S.: A new low-complexity near-ML detection algorithm for spatial modulation. IEEE Wirel. Commun. Lett. 2(1), 90–93 (2013)CrossRefGoogle Scholar
  27. 27.
    Jeganathan, J.; Ghrayeb, A.; Szczecinski, L.; Ceron, A.: Space shift keying modulation for MIMO channels. IEEE Trans. Wirel. Commun. 8(7), 3692–3703 (2009)CrossRefGoogle Scholar
  28. 28.
    Xiao, Y.; Yang, Z.; Dan, L.; Yang, P.; Yin, L.; Xiang, W.: Low-complexity signal detection for generalized spatial modulation. IEEE Commun. Lett. 18(3), 403–406 (2014)CrossRefGoogle Scholar
  29. 29.
    Younis, A.; Sinanovic, S.; Di Renzo, M.; Mesleh, R.; Haas, H.: Generalised sphere decoding for spatial modulation. IEEE Trans. Commun. 61(7), 2805–2815 (2013)CrossRefGoogle Scholar
  30. 30.
    Del Moral, P.; Doucet, A.; Jasra, A.: An adaptive sequential Monte Carlo method for approximate Bayesian computation. Stat. Comput. 22(5), 1009–1020 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Baraniuk, R.G.: Compressive sensing [lecture notes]. IEEE Signal Process. Mag. 24(4), 118–121 (2007)CrossRefGoogle Scholar
  32. 32.
    Glover, F.; Laguna, M.: Tabu search. In: Handbook of Combinatorial Optimization. Springer, New York, pp. 3261–3362 (2013)Google Scholar
  33. 33.
    Mesleh, R.; Di Renzo, M.; Haas, H.; Grant, P.M.: Trellis coded spatial modulation. IEEE Trans. Wirel. Commun. 9(7), 2349–2361 (2010)CrossRefGoogle Scholar
  34. 34.
    Vladeanu, C.: Turbo trellis-coded spatial modulation. In: 2012 IEEE Global Communications Conference (GLOBECOM), pp. 4024–4029. IEEE (2012)Google Scholar
  35. 35.
    Yigit, Z.; Basar, E.; Mesleh, R.: Trellis coded quadrature spatial modulation. Phys. Commun. 29, 147–155 (2018)CrossRefGoogle Scholar
  36. 36.
    Chau, Y.A.; Yu, S.H.: Space modulation on wireless fading channels. In: IEEE VTS 54th Vehicular Technology Conference, 2001. VTC 2001 Fall, vol. 3, pp. 1668–1671. IEEE (2001)Google Scholar
  37. 37.
    Haas, H.; Costa, E.; Schulz, E.: Increasing spectral efficiency by data multiplexing using antenna arrays. In: The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2002, Vol. 2, pp. 610–613. IEEE (2002)Google Scholar
  38. 38.
    Jeganathan, J.; Ghrayeb, A.; Szczecinski, L.: Spatial modulation: optimal detection and performance analysis. IEEE Commun. Lett. 12(8), 545–547 (2008)CrossRefGoogle Scholar
  39. 39.
    Di Renzo, M.; Haas, H.: Performance comparison of different spatial modulation schemes in correlated fading channels. In: 2010 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2010)Google Scholar
  40. 40.
    Simha, G.G.; Koila, S.; Neha, N.; Raghavendra, M.A.N.S.; Sripati, U.: Redesigned spatial modulation for spatially correlated fading channels. Wirel. Pers. Commun. 97(4), 5003–5030 (2017)CrossRefGoogle Scholar
  41. 41.
    Quitin, F.; Oestges, C.; Horlin, F.; De Doncker, P.: A polarized clustered channel model for indoor multiantenna systems at 3.6 GHz. IEEE Trans. Veh. Technol. 59(8), 3685–3693 (2010)CrossRefGoogle Scholar
  42. 42.
    Al-Dhahir, N.: FIR channel-shortening equalizers for MIMO ISI channels. IEEE Trans. Commun. 49(2), 213–218 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Oestges, C.: Validity of the Kronecker model for MIMO correlated channels. In: IEEE 63rd Vehicular Technology Conference, 2006. VTC 2006-Spring, vol. 6, pp. 2818–2822. IEEE (2006)Google Scholar
  44. 44.
    Auer, G.; Giannini, V.; Desset, C.; Godor, I.; Skillermark, P.; Olsson, M.; Fehske, A.: How much energy is needed to run a wireless network? IEEE Wirel. Commun. 18(5), 30–38 (2011)CrossRefGoogle Scholar
  45. 45.
    Mesleh, R.; Hiari, O.; Younis, A.; Alouneh, S.: Transmitter design and hardware considerations for different space modulation techniques. IEEE Trans. Wirel. Commun. 16(11), 7512–7522 (2017)CrossRefGoogle Scholar
  46. 46.
    Minicircuits SWSPDT. Accessed Mar 13, 2017 (2017)
  47. 47.
    Mesleh, R.; Hiari, O.; Younis, A.: Generalized space modulation techniques: hardware design and considerations. Phys. Commun. 26, 87–95 (2018)CrossRefGoogle Scholar
  48. 48.
    Microship: 16-Bit Microcontrollers. Accessed Mar 13, 2017 (2017)
  49. 49.
    Mouser: Serial to parallel logic converters. Accessed Mar 13, 2017 (2017)
  50. 50.
  51. 51.
  52. 52.
    Bacon, P.; Fischer, D.; Lourens, R.: Overview of RF switch technology and applications. Microwave J. 57(7), 76–88 (2014)Google Scholar
  53. 53.
    Mobile Broadband Evolution Towards 5G: 3GPP Rel-12 & Rel-13 and Beyond (2015)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Communication Engineering, School of Electronics EngineeringVellore Institute of TechnologyVelloreIndia
  2. 2.Hardware system EngineerQualcomm India Pvt. Ltd.ChennaiIndia
  3. 3.Department of Computer Science and EngineeringSreenivasa Institute of Technology and Management StudiesChittoorIndia

Personalised recommendations