Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 449–465 | Cite as

Ground-Motion Relations for Subduction-Zone Earthquakes in Java Island, Indonesia

  • Abdul Latif Ashadi
  • SanLinn Isma’il KakaEmail author
Research Article - Earth Sciences


Predictive relations are presented for peak ground acceleration and 5% damped response spectral acceleration at frequencies of 1, 2 and 5 Hz for subduction-zone earthquakes in Java Island. The dataset includes 1825 strong-motion recordings from 152 subduction-zone earthquakes of moment magnitude (M) 4.8–8.6 that occurred between 2008 and 2013. The data include 42 additional events from Sumatra subduction zones. The predictive relations are developed for both interface and in-slab events on rock sites (B and C class) and soil sites (D and E class). These relations are important because Java Island is a seismically active and densely populated region in Indonesia and no region-specific ground-motion relations have been developed yet for the island. The available relations (i.e., Atkinson and Boore in Bull Seismol Soc Am 93:1703–1729, 2003; Youngs et al. in Seismol Res Lett 68(1):58–73, 1997) were found to be unreliable in predicting previously recorded subduction events in Java Island. Thus, we undertook this study to develop ground-motions relations specific to Java Island. Our predictions are generally lower than those predicted by Youngs et al. (Seismol Res Lett 68(1):58–73, 1997) and significantly higher for moderate events than those of Atkinson and Boore (Bull Seismol Soc Am 93:1703–1729, 2003. Predicting ground shaking is a key step in anticipating earthquake effects in the region. The ground-motion predictive relations developed in this study can be used in probabilistic seismic hazard assessment studies in Java Island.


Ground-motion relations Subduction zone Java Island 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Okal, E.A.: The south of Java earthquake of 1921 september 11: a negative search for a large interpolate thrust event at the Java Trench. Geophys. J. Int. 190, 1657–1672 (2012)CrossRefGoogle Scholar
  2. 2.
    Abercrombie, R.E.; Antolik, M.; Felzer, K.; Ekstrom, G.: The 1994 Java tsunami earthquake: slip over a subducting seamount. J. Geophys. Res. 106, 6595–6607 (2001)CrossRefGoogle Scholar
  3. 3.
    Tsuji, Y.; Imamura, F.; Matsutomi, H.; Synolakis, C.E.; Nanang, P.T.; Jumadi Harada, S.; Han, S.S.; Arai, K.; Cook, B.: Field survey of the East Java earthquake and tsunami of June 3, 1994. PAGEOPH 144, 3–4 (1995)Google Scholar
  4. 4.
    Agency, N.D.P.: Preliminary Damage and Loss Assessment: Yogyakarta and Central Java Natural Disaster. National Development Planning Agency, Jakarta (2006)Google Scholar
  5. 5.
    Hutapea, B.; Rudianto, B.; Toha, F.X.; Hartono, Adi, A.D.; Chavez, J.; Hausler, E.; Irwansyah Sriana, T.; Syam, A.: The M 6.3 Java, Indonesia, earthquake of May 27, 2006. In: EERI Newsletter, vol. 40. p. 8 (2006)Google Scholar
  6. 6.
    Tsuji, T.; Yamamoto, K.; Matsuoka, T.; Yamada, Y.; Onishi, K.; Bahar, A.; Meilano, I.; Abidin, H.Z.: Earthquake fault of the 26 May 2006 Yogyakarta earthquake observed by SAR inferometry. Earth Planets Space 61, e29–e32 (2009)CrossRefGoogle Scholar
  7. 7.
    Kato, T.; Ito, T.; Abidin, H.Z.: Preliminary report on crustal deformation surveys and tsunami measurements caused by the July 17, 2006 South off Java Island earthquake and Tsunami, Indonesia. Earth Planets Space 59(9), 1055–1059 (2007)CrossRefGoogle Scholar
  8. 8.
    Mori, J.; Mooney, W.D.; Kurniawan, S.; Anaya, A.I.; Widiyantoro, S.: The 17 July 2006 tsunami earthquake in West Java, Indonesia. Seismol. Res. Lett. 78(2), 201–207 (2007)CrossRefGoogle Scholar
  9. 9.
    Boen, T.; Wijanto, S.; Andirono, T.; Hilman, D.: The M7.3 September 2, 2009, West Java quake. In: EERI Newsletter, vol. 43. p. 4 (2009)Google Scholar
  10. 10.
    Housner, G.: Strong Ground Motion. In: Wiegel, R.L. (ed.) Chapter 4 in Earthquake Engineering. Prentice-Hall, Upper Saddle River (1970)Google Scholar
  11. 11.
    Abrahamson, N.A.; Shedlock, K.M.: Overview. Seismol. Res. Lett. 68, 9–23 (1997)CrossRefGoogle Scholar
  12. 12.
    Douglas, J.: Ground-Motion Prediction Equations 1964–2010. Pacific Earthquake Engineering Research Center, Berkeley, CA (2011)Google Scholar
  13. 13.
    Youngs, R.R.; Chiou, S.J.; Silva, W.J.; Humphrey, J.R.: Strong ground motion attenuation relationships for subduction zone earthquakes. Seismol. Res. Lett. 68(1), 58–73 (1997)CrossRefGoogle Scholar
  14. 14.
    Atkinson, G.M.; Boore, D.M.: Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions. Bull. Seismol. Soc. Am. 93, 1703–1729 (2003)CrossRefGoogle Scholar
  15. 15.
    Zhao, J.X.; Zhang, J.; Asano, A.; Ohno, Y.; Oouchi, T.; Takahashi, T.; Ogawa, H.; Irikura, K.; Thio, H.K.; Somerville, P.G.: Attenuation relations of strong ground-motion in Japan using site classification based on predominant period. Bull. Seismol. Soc. Am. 96(3), 898–913 (2006)CrossRefGoogle Scholar
  16. 16.
    Lin, P.S.; Lee, C.T.: Ground-motion attenuation relationships for subduction-zone earthquakes in Northeastern Taiwan. Bull. Seismol. Soc. Am. 98(1), 220–240 (2008). CrossRefGoogle Scholar
  17. 17.
    Megawati, K.; Pan, T.-C.: Ground-motion attenuation relationship for the Sumatran megathrust earthquakes. Earthq. Eng. Struct. Dyn. (2009). Google Scholar
  18. 18.
    SNI-1726: Indonesian earthquake resistant building code. In: (BSN), N.S.A.o.I. (ed.). p. 149. Jakarta (2012)Google Scholar
  19. 19.
    Abe, K.: Magnitudes of large shallow earthquakes from 1904 to 1980. Phys. Earth Planet. Interiors 27(1), 72–92 (1981)CrossRefGoogle Scholar
  20. 20.
    Scordilis, E.M.: Empirical global relations converting M S and m b to moment magnitude. J. Seismol. 10(2), 225–236 (2006). CrossRefGoogle Scholar
  21. 21.
    Irsyam, M.; Sengara, I.W.; Asrurifak, M.; Ridwan, M.; Aldiamar, F.; Widiyantoro, S.; Triyoso, W.; Natawijaya, D.H.; Kertapati, E.; Meilano, I.: Suhardjono: Summary: development of seismic hazard maps of Indonesia for revision of seismic hazard map in SNI 03-1726-2002, p. 76. Ministry of Public Works, Bandung (2010) (unpublished research report)Google Scholar
  22. 22.
    Garcia, D.; Wald, D.J.; Hearne, M.: A global earthquake discrimination scheme to optimize ground-motion prediction equation selection. Bull. Seismol. Soc. Am. 102(1), 185–203 (2012)CrossRefGoogle Scholar
  23. 23.
    Tichelaar, B.W.; Ruff, L.J.: Depth of seismic coupling along subduction zones. J. Geophys. Res. Solid Earth 98(B2), 2017–2037 (1993)CrossRefGoogle Scholar
  24. 24.
    Wald, D.J.; Allen, T.I.: Topographic slope as a proxy for seismic site conditions and amplification. Bull. Seismol. Soc. Am. 97(5), 1379–1395 (2007). CrossRefGoogle Scholar
  25. 25.
    Allen, T.I.; Wald, D.J.: On the use of high-resolution topographic data as a proxy for seismic site conditions (VS30). Bull. Seismol. Soc. Am. 99(2A), 935–943 (2009). CrossRefGoogle Scholar
  26. 26.
    Draper, N.R.; Smith, H.: Applied Regression Analysis, 2nd edn. Wiley, New York (1981)zbMATHGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Geophysical Lab, Geosciences Department, College of Petroleum Engineering and Geosciences (CPG)King Fahd University of Petroleum and Minerals (KFUPM)DhahranSaudi Arabia
  2. 2.Geosciences Department, College of Petroleum Engineering and Geosciences (CPG)King Fahd University of Petroleum and Minerals (KFUPM)DhahranSaudi Arabia

Personalised recommendations