Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1425–1436 | Cite as

Surface Modification of Ti6Al4V Alloy Using EDMed Electrode Made with Nano- and Micron-Sized TiC/Cu Powder Particles

  • Venkata Rao ChundruEmail author
  • Ramji Koona
  • Srinivasa Rao Pujari
Research Article - Mechanical Engineering


The present study is an experimental work carried on for surface modification of Ti6Al4V alloy using TiC/Cu powder metallurgy (P/M) electrode. Both, machine and tool parameters were selected for study, and these experiments were planned as per Taguchi’s L18 mixed orthogonal array. Optimal combination of parameters was obtained using Taguchi’s method, and analysis of variance was performed to evaluate the influence of parameters on surface roughness (SR) and micro-hardness (MH). Peak current, particle size and pulse on time were found to be the most significant accordingly on both SR and MH. High reactive surface area of nanoparticles made greater surface alloying than the other tool electrodes and has shown its influence positively on both SR and MH. The EDS analysis reveals the migration of Ti and Cu elements, deposition of carbon and diffusion of oxygen particles on the surface. The XRD spectrum confirms the presence of carbides (TiC, \(\hbox {Ti}_{2}\mathrm{C}\), \(\hbox {Fe}_{5}\mathrm{C}_{2}\) and \(\hbox {Fe}_{3}\mathrm{C}\)) and oxides (TiO and \(\hbox {Ti}_{3}\mathrm{O}\)) at different machining conditions which indicates the influence of TON and IP on discharge energies and in turn on the properties of machined surface. The carbides, generated on the machined surface, increased the hardness as high as 912 HV, without much sacrifice of the roughness of the machined surface. The range of roughness values obtained in the present investigation is 1.88–4.449 \(\upmu \hbox {m}\).


Surface modification Surface roughness Micro-hardness P/M electrode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are thankful to the management of GITAM (Deemed to be University), Visakhapatnam, India for allowing us to utilise the equipment purchased under DST-SERB Project (No. SB/FTP/ETA-0070/2014).


  1. 1.
    Wang, S.; Ma, Z.; Liao, Z.H.; Song, J.; Yang, K.: Study on improved tribological properties by alloying copper to CP-Ti and Ti6Al4V alloy. Mater. Sci. Eng. C 57, 123–132 (2015)CrossRefGoogle Scholar
  2. 2.
    Luo, J.; Ye, P.; Li, M.Q.; Liu, L.Y.: Effect of the alpha grain size on the deformation behaviour during isothermal compression of Ti6Al4V alloy. Mater. Des. 88, 32–40 (2015)CrossRefGoogle Scholar
  3. 3.
    Arulkirubakaran, D.; Senthilkumar, V.; Kumawat, V.: Effect of micro-textured tools on machining of Ti6Al4V alloy, an experimental and numerical approach. Int. J. Refract. Mater. 54, 165–177 (2016)CrossRefGoogle Scholar
  4. 4.
    Fitseva, V.; Krohn, H.; Hanke, S.; Dos Santos, J.F.: Friction surfacing of Ti6AL4V process characteristics and deposition behaviour at various rotational speeds. Surf. Coat. Technol. 278, 56–63 (2015)CrossRefGoogle Scholar
  5. 5.
    Gill, A.S.; Kumar, S.: Surface alloying of H11 die steel by tungsten using EDM process. Int. J. Adv. Manuf. Technol. 78, 1585–1593 (2015)CrossRefGoogle Scholar
  6. 6.
    Das, S.: Surface alloying of aluminium by W–Cu–Cr powder metallurgy tool electrode in EDM. Int. J. Adv. Res. Eng. Syst. 2, 1–10 (2016)Google Scholar
  7. 7.
    Singh, H.; Banwait, S.S.: Experimental investigations of surface modification of AISI 1045 die steel by electro discharge machining process. Am. J. Mech. Eng. 4(4), 131–141 (2016)Google Scholar
  8. 8.
    Khan, A.A.; Ndaliman, M.B.; Mohamad, U.A.K.B.; Sulong, N.F.B.; Zain, Z.M.: Surface quality produced in EDM with tungsten carbide and copper compacted electrodes. Adv. Mater. Res. 1115, 24–28 (2015)CrossRefGoogle Scholar
  9. 9.
    Gill, A.S.; Kumar, S.: Surface roughness and micro hardness evaluation for EDM with Cu–Mn powder metallurgy tool. Mater. Manuf. Proc. 31, 514–521 (2016)CrossRefGoogle Scholar
  10. 10.
    Rahang, M.; Patowari, P.K.: Parametric optimization for selective surface modification in EDM using Taguchi analysis. Mater. Manuf. Proc. 31, 422–431 (2016)CrossRefGoogle Scholar
  11. 11.
    Khanra, A.K.; Sarkar, B.R.; Bhattacharya, B.; Pathak, L.C.; Godkhindi, M.M.: Performance of ZrB\(_2\)–Cu composite as an EDM electrode. J. Mater. Proc. Technol. 183, 122–126 (2007)CrossRefGoogle Scholar
  12. 12.
    Li, L.; Wong, Y.S.; Fuh, J.Y.H.; Lu, L.: Effect of TiC in copper–tungsten electrodes on EDM performance. J. Mater. Proc. Technol. 113, 563–567 (2001)CrossRefGoogle Scholar
  13. 13.
    Das, A.; Misra, J.P.: Experimental investigation on surface modification of aluminum by electric discharge coating process using TiC/Cu green compact tool electrode. Mach. Sci. Technol. 16, 601–623 (2012)CrossRefGoogle Scholar
  14. 14.
    Cogun, C.; Esen, Z.; Genc, A.; Cogun, F.; Akturk, N.: Effect of powder metallurgy Cu–B\(_{4}\)C electrodes on workpiece surface characteristics and machining performance of electric discharge machining. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 230, 2190–2203 (2016)CrossRefGoogle Scholar
  15. 15.
    Bai, C.Y.; Koo, C.H.: Effects of kerosene or distilled water as dielectric on electrical discharge alloying of super alloy Haynes 230 with Al–Mo composite electrode. Surf. Coat. Technol. 200, 4127–4135 (2006)CrossRefGoogle Scholar
  16. 16.
    Srikanth, V.; Upadhyaya, G.S.: Effect of tungsten particle size on the sintered properties of heavy alloys. Powder Technol. 39, 61–67 (1984)CrossRefGoogle Scholar
  17. 17.
    Samuel, M.P.; Philip, P.K.: Powder metallurgy tool electrodes for electric discharge machining. Int. J. Mach. Tools Manuf. 37, 1625–1633 (1997)CrossRefGoogle Scholar
  18. 18.
    Wang, W.F.: Effect of tungsten particle size and copper content on working behaviour of W–Cu alloy electrodes during electro discharge machining. Powder Metall. 40(4), 295–300 (1997)CrossRefGoogle Scholar
  19. 19.
    Yanik, B.; Agustos, H.; Ipek, Y.; Koyun, A.; Uzunsoy, D.: Synthesis and characterization of aluminium nanoparticles by electric arc technique. Arab. J. Sci. Eng. 38, 3587–3592 (2013)CrossRefGoogle Scholar
  20. 20.
    Fang, Z.Z.; Wang, X.; Ryu, T.; Hwang, K.S.; Sohn, H.Y.: Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide—a review. Int. J. Refract. Met. Hard Mater. 27, 288–299 (2009)CrossRefGoogle Scholar
  21. 21.
    Mohammadi, A.; Tehrani, A.F.; Emanian, E.; Karimi, D.: A new approach to surface roughness and roundness improvement in wire electrical discharge turning based on statistical analysis. Int. J. Adv. Manuf. Technol. 39, 64–73 (2008)CrossRefGoogle Scholar
  22. 22.
    Patowari, P.K.; Saha, P.; Mishra, P.K.: An experimental investigation of surface modification of C-40 steel using W–Cu powder metallurgy sintered compact tools in EDM. Int. J. Adv. Manuf. Technol. 80, 343–360 (2015)CrossRefGoogle Scholar
  23. 23.
    Singh, B.; Kumar, J.; Kumar, S.: Optimization and surface modification in electrical discharge machining of AA 6061/SiC\(_\text{p}\) composite using Cu–W electrode. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 231(3), 332–348 (2017)CrossRefGoogle Scholar
  24. 24.
    Gangadharudu, T.; Gangopadhyay, S.; Biswas, C.K.: Effect of powder-suspended dielectric on the EDM characteristics of Inconel 625. J. Mater. Eng. Perform. 25, 704–717 (2016)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Venkata Rao Chundru
    • 1
    Email author
  • Ramji Koona
    • 1
  • Srinivasa Rao Pujari
    • 2
  1. 1.Department of Mechanical EngineeringAndhra UniversityVisakhapatnamIndia
  2. 2.Department of Mechanical EngineeringGITAMVisakhapatnamIndia

Personalised recommendations