Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1415–1424 | Cite as

Cosine Efficiency Distribution with Reduced Tower Shadowing Effect in Rotating Heliostat Field

  • Messaoud BouamraEmail author
  • Mustapha Merzouk
Research Article - Mechanical Engineering
  • 10 Downloads

Abstract

Of all concentrating solar power technologies available today; the solar tower power plant is placed in the foreground and may become the preferred technology. In the present work, an algorithm, which gives us the cosine efficiency distribution of preliminary design of rotating heliostat field of solar tower power plant in the northern hemisphere, is presented. A regular radial staggered configuration is used. The variable radial distance between consecutives rows is computed considering the blocking factor constant for the entire solar field. A comparative performance analysis is developed between the existing PS 10 solar power plant in Spain, and the reconfigured one using the technology of rotating solar field concept. The study includes the cosine efficiency and the tower shadowing effect. The reconfigured model of PS10 is believed to be more promising than of the original one, in case it is adapted to suit the same technology.

Keywords

Shadowing effect Cosine efficiency Solar power tower Rotating heliostat field Performance 

List of symbols

\({\delta }\)

Solar declination angle (\(^{\circ }\))

\(\alpha _{\mathrm{s}} \)

Solar altitude angle (\(^{\circ }\))

\(\omega _{\mathrm{s}} \)

Hour angle (\(^{\circ }\))

\(\Delta R\)

Local radial increment (m)

\(\mathrm{wr}\)

Width–height ration of the heliostat

\(\mathrm{LH}\)

Height of the heliostat (m)

\(\Delta R_{\mathrm{min}} \)

Minimum allowable local increment of the radius between consecutive rows (m)

\(\vec {t}\)

Unit vector pointing to the receiver surface

\(H_\mathrm{t} \)

Tower optical height

\({\varPsi }_{\mathrm{max}}\)

Maximum angular direction (\(^{\circ }\))

\(R_{\mathrm{region}} \)

Radius for the first row of such heliostat region (m)

\(\varepsilon _{\mathrm{T}} \)

Elevation angle of the heliostat unit vector pointing from the center of the heliostat surface to the receiver

\({\eta }_{\mathrm{cos}} \)

Cosine efficiency

\({n}_\mathrm{d} \)

Day of the year

\(\phi \)

Latitude angle of heliostat field (\(^{\circ }\))

\(\gamma _{\mathrm{s}} \)

Solar azimuth angle (\(^{\circ }\))

\(f_{\mathrm{b}} \)

Blocking factor

\(\omega \)

Incidence angle (\(^{\circ }\))

\(L_{\mathrm{s}} \)

Length of the tower shaded area

H

Tower height

\(\vec {s}\)

Unit vector pointing to the sun

\(\vec {n}\)

Unit normal of the surface of the heliostat

\(\Delta \alpha _{\mathrm{T}} \)

Azimuth angle increment (\(^{\circ }\))

\(\hbox {DHs}\)

Diagonal of the heliostat considering a safety distance (m)

\(\hbox {ds}\)

Separation distance factor between the adjacent heliostats

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kassem, A.; Al-Haddad, K.; Komljenovic, D.; Schiffauerova, A.: A value tree for identification of evaluation criteria for solar thermal power technologies in developing countries. Sustain. Energy Technol. Assess. 16, 18–32 (2016)Google Scholar
  2. 2.
    Chaanaoui, M.; Vaudreuil, S.; Bounahmidi, T.: Benchmark of concentrating solar power plants: historical, current and future technical and economic development. Proce. Comput. Sci. 83, 782–789 (2016)CrossRefGoogle Scholar
  3. 3.
    Pavlović, T.M.; Radonjić, I.S.; Milosavljević, D.D.; Pantić, L.S.: A review of concentrating solar power plants in the world and their potential use in Serbia. Renew. Sustain. Energy Rev. 16, 3891–3902 (2012)CrossRefGoogle Scholar
  4. 4.
    Baharoon, D.A.; Abdul Rahman, H.; Zaidi, W.; Omar, W.; Fadhl, S.O.: Historical development of concentrating solar power technologies to generate clean electricity efficiently—a review. Renew. Sustain. Energy Rev. 41, 996–1027 (2015)CrossRefGoogle Scholar
  5. 5.
    Behar, O.; Khellaf, A.; Mohammedi, K.: A review of studies on central receiver solar thermal power plants. Renew. Sustain. Energy Rev. 23, 12–39 (2013)CrossRefGoogle Scholar
  6. 6.
    Piroozmand, P.; Boroushaki, M.: A computational method for optimal design of the multi-tower heliostat field considering heliostats interactions. Energy 106, 240–252 (2016)CrossRefGoogle Scholar
  7. 7.
    Bouamra, M.; Merzouk, M.: Analysis of the optical performances of the solar tower power plant. Proc. Eng. Technol. 15, 88–93 (2017)Google Scholar
  8. 8.
    Collado, F.J.; Guallar, J.: A review of optimized design layouts for solar power tower plants with campo code. Renew. Sustain. Energy Rev. 20, 142–154 (2013)CrossRefGoogle Scholar
  9. 9.
    Yamani, N.; Khellaf, A.; Mohammedi, K.; Behar, O.: Assessment of solar thermal tower technology under Algerian climate. Energy 126, 444–460 (2017)CrossRefGoogle Scholar
  10. 10.
    Mutuberria, A.; Pascual, J.; Guisado, M.V.; Mallor, F.: Comparison of heliostat field layout design methodologies and impact on power plant efficiency. Energy Proc. 69, 1360–1370 (2015)CrossRefGoogle Scholar
  11. 11.
    Yingxue, Y.; Yeguang, H.; Shengdong, G.: Heliostat field layout methodology in central receiver systems based on efficiency-related distribution. Sol. Energy 117, 114–124 (2017)Google Scholar
  12. 12.
    Kistler, B.L.: A user’s manual for DELSOL3: a computer code for calculating the optical performance and optimal system design for solar thermal central receiver plants. Sandia Report SAND86-8018 (1986). https://prod.sandia.gov/techlib-noauth/access-control.cgi/1986/868018.pdf. Accessed 2018
  13. 13.
    Schmitz, M.; Schwarzbözl, P.; Buck, R.; Pitz-Paal, R.: Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators. Sol. Energy 80, 11–120 (2006)CrossRefGoogle Scholar
  14. 14.
    Schwarzbözl, P.; Schmitz, M.; Pitz-Paal, R.: Visual HFLCALe Software Tool for Layout and Optimization of Heliostat Fields. SolarPACES, Berlin (2009)Google Scholar
  15. 15.
    Wang, K.; He, Y.; Qiu, Y.; Zhang, Y.: A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver. Renew. Energy 89, 93–107 (2016)CrossRefGoogle Scholar
  16. 16.
    Wendelin, T.: SolTRACE: a new optical modeling tool for concentrating solar optics. National Renewable Energy Laboratory (NREL). International Solar Energy Conference (2003)Google Scholar
  17. 17.
    Sánchez, M.; Romero, M.: Methodology for generation of heliostat field layout in central receiver systems based on yearly normalized energy surfaces. Sol. Energy 80, 861–874 (2006)CrossRefGoogle Scholar
  18. 18.
    Yao, Z.; Wang, Z.; Lu, Z.; Wei, X.: Modeling and simulation of the pioneer 1 MW solar thermal central receiver system in China. Renew. Energy 34, 2437–2446 (2009)CrossRefGoogle Scholar
  19. 19.
    Wei, X.; Lu, Z.; Wang, Z.; Yu, W.; Zhang, H.; Yao, Z.: A new method for the design of the heliostat field layout for solar tower power plant. Renew. Energy 35, 1970–1975 (2010)CrossRefGoogle Scholar
  20. 20.
    Blanco, M.J.; Amieva, J.M.; Mancillas, A.: The Tonatiuh software development project: an open source approach to the simulation of solar concentrating systems. In: ASME 2005 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers (2005)Google Scholar
  21. 21.
    Siala, F.M.F.; Elayeb, M.E.: Mathematical formulation of a graphical method for a no-blocking heliostat field layout. Renew. Energy 23, 77–92 (2001)CrossRefGoogle Scholar
  22. 22.
    He, Y.L.; Cui, F.Q.; Cheng, Z.D.; Li, Z.Y.; Tao, W.: Numerical simulation of solar radiation transmission process for the solar tower power plant: from the heliostat field to the pressurized volumetric receiver. Appl. Therm. Eng. 61, 583–595 (2013)CrossRefGoogle Scholar
  23. 23.
    Gadalla, M.; Saghafifar, M.: Thermo-economic and comparative analyses of two recently proposed optimization approaches for circular heliostat fields: camporadial-staggered and biomimetic spiral. Sol. Energy 136, 197–209 (2016)CrossRefGoogle Scholar
  24. 24.
    Collado, F.J.; Guallar, J.: Campo: generation of regular heliostat fields. Renew. Energy 46, 49–59 (2012)CrossRefGoogle Scholar
  25. 25.
    Noone, C.J.; Torrilhon, M.; Mitsos, A.: Heliostat field optimization: a new computationally efficient model and biomimetic layout. Sol. Energy 86, 792–803 (2012)CrossRefGoogle Scholar
  26. 26.
    Atif, M.; Al-Sulaiman, F.A.: Optimization of heliostat field layout in solar central receiver systems on annual basis using differential evolution algorithm. Energy Convers. Manag. 95, 1–9 (2015)CrossRefGoogle Scholar
  27. 27.
    Collado, F.J.; Guallar, J.: Two-stages optimized design of the collector field of solar power tower Plants. Sol. Energy 135, 884–896 (2016)CrossRefGoogle Scholar
  28. 28.
    Wei, X.; Lu, Z.; Yu, W.; Wang, Z.: A new code for the design and analysis of the heliostat field layout for power tower system. Sol. Energy 84, 685–690 (2010)CrossRefGoogle Scholar
  29. 29.
    Cádiz, P.; Frasquet, M.; Silva, M.; Martínez, F.; Carballo, J.: Shadowing and blocking effect optimization for a variable geometry heliostat field. Energy Proc. 69, 60–69 (2015)CrossRefGoogle Scholar
  30. 30.
    Valeriano, R.; Miguel, F.; Fernando, M.; Manuel, S.; Isidoro, L.; Francisco, D.A.; Gonzalo, L.M.: The variable geometry central receiver system concept. First results and comparison with conventional central receiver systems. Energy Proc. 57, 2255–2264 (2014)CrossRefGoogle Scholar
  31. 31.
    Zhang, H.; Wang, Z.; Guo, M.; Liang, W.: Cosine efficiency distribution of heliostats field of solar thermal power tower plants. In: Power and Energy Engineering Conference (2009)Google Scholar
  32. 32.
    Augsburger, G.; Favrat, D.: Modelling of the receiver transient flux distribution due to cloud passages on a solar tower thermal power plant. Sol. Energy 87, 42–52 (2013)CrossRefGoogle Scholar
  33. 33.
    Huang, W.; Li, L.; Li, Y.; Han, Z.: Development and evaluation of several models for precise and fast calculations of shading and blocking in heliostat field. Sol. Energy 95, 255–264 (2013)CrossRefGoogle Scholar
  34. 34.
    Collado, F.J.: Preliminary design of surrounding heliostat fields. Renew. Energy 34, 1359–1363 (2009)CrossRefGoogle Scholar
  35. 35.
    Collado, F.J.; Turguno, J.A.: Claculation of the annual thermal energy supplied by a defined heliostat. Sol. Energy 42, 149–165 (1989)CrossRefGoogle Scholar
  36. 36.
    Eddhibi, F.; Ben Amara, M.; Balghouthi, M.: Design and analysis of heliostat field layout with reduced shading effect in southern Tunisia. Int. J. Hydrog. Energy 42, 1–24 (2017)CrossRefGoogle Scholar
  37. 37.
    Zhang, Z.; Yang, L.; Xu, G.; Du, X.: An efficient code to optimize the heliostat field and comparisons between the biomimetic spiral and staggered layout. Renew. Energy 87, 720–730 (2016)CrossRefGoogle Scholar
  38. 38.
    Eddhib, F.; Ben Amara, M.; Balghouthi, M.; Guizani, A.: Optical study of solar tower power plants. J. Phys. Conf. Ser. 596, 012018 (2015).  https://doi.org/10.1088/1742-6596/596/1/012018 CrossRefGoogle Scholar
  39. 39.
    Deshmukh, S.; Gadhe, P.M.; Yadav, J.: Design of heliostat field for small scale central receiver system. Int. J. Curr. Eng. Technol. (2017). http://inpressco.com/category/ijcet
  40. 40.
    Besarati, S.M.; Goswami, D.Y.: A computationally efficient method for the design of the heliostat field for solar power tower plant. Renew. Energy 69, 226–232 (2014)CrossRefGoogle Scholar
  41. 41.
    Rinaldi, F.; Binotti, M.; Giostri, A.; Manzolini, G.: Comparison of linear and point focus collectors in solar power plants. Energy Proc. 49, 1491–1500 (2014)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of MechanicsBlida University 1, Fundamental and Applied Physics Laboratory (FundAPL)BlidaAlgeria
  2. 2.Renewable Energies DepartmentBlida University 1BlidaAlgeria

Personalised recommendations