Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 259–267 | Cite as

Effect of Micelle Structure on the Viscosity of Sulfonate Gemini Surfactant Solution

  • Zheng Yahui
  • Tang ShanfaEmail author
  • Wang Jiaxin
  • Musa Mpelwa
  • Pu Mingzheng
  • Zhou Tianyuan
Research Article - Chemistry


In order to optimize the thickening performance of clean fracturing fluid, a series of sulfonate Gemini surfactants (DSm-s-m) were synthesized and identified by FTIR, \(^{1}\hbox {HNMR}\), and \(^{13}\hbox {CNMR}\). The surface tension curve was obtained by testing the surface tension of the surfactant at different concentrations, and the viscosity of sulfonate Gemini surfactant solution was measured by rheometer and investigated through changing the molecular structure. The microstructures of the solution were studied by SEM. The experimental results indicated that the CMC of the surfactant decreased with increasing the length of the hydrophobic chain. Moreover, the viscosity of sulfonate Gemini surfactant changed with the carbon number (s or m) of spacer group and hydrophobic chain, and the DS18-3-18 had superior viscosity behavior. The viscosity of the DS18-3-18 solution decreased with the temperature increase but was still \(13.25 \hbox { mPa}\cdot \hbox {s}\) at \(90\,{^{\circ }}\hbox {C}\). The microstructures of DS18-s-18 solution demonstrated that the micelles of the DS18-s-18 solution changed from spherical to layer like and finally to commixture of spherical/layer like with increasing the carbon number of spacer group (\(s=2,3,4\)), and the viscosity of the solution increased firstly and then decreased correspondingly. The number of sheet micelles and bulk density in DS18-3-18 solution decreased with the increase of temperature, causing the decrease of the viscosity in solution. However, the intact sheet micelles still existing in solution at \(90\,{^{\circ }}\hbox {C}\) meant that the DS18-3-18 had prominent temperature-resistant viscosity behavior. These phenomena illustrated that changing the molecular structure of surfactants could cause changes in their microstructure and finally lead to a change in the viscosity of the solution.


Sulfonate Gemini surfactant Molecular structure Viscosity Micelle structure High temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the National Natural Science Foundation of China (51474035): The fundamental study of high-temperature clean fracturing fluid constructed by anionic Gemini surfactant and nanoparticle and Innovation Fund Project of Hubei Cooperative Innovation Center of Unconventional Oil and Gas (HBUOG-2014-2): adsorption desorption characteristics of shale gas and optimization of clean fracturing fluid.


  1. 1.
    Beckwith, R.: Depending on guar for shale oil and gas development. J. Pet. Technol. 64, 44–55 (2012). CrossRefGoogle Scholar
  2. 2.
    Li, L.; Nasr-El-Din, H.A.; Cawiezel, K.E.: Rheological properties of a new class of viscoelastic surfactant. SPE Prod. Oper. (2010). Google Scholar
  3. 3.
    Dai, C.; Wang, T.; Zhao, M.; Sun, X.; Gao, M.; Xu, Z.; Guan, B.; Liu, P.: Impairment mechanism of thickened supercritical carbon dioxide fracturing fluid in tight sandstone gas reservoirs. Fuel 211, 60–66 (2018)CrossRefGoogle Scholar
  4. 4.
    Yan, Z.; Dai, C.; Zhao, M.; Feng, H.; Gao, B.; Li, M.: Research and application progress of cleaning fracturing fluid. Oilfield Chem. 32, 141–145 (2015). Google Scholar
  5. 5.
    Zana, R.: Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Adv. Colloid Interface Sci. 97, 205 (2002). CrossRefGoogle Scholar
  6. 6.
    Lai, L.; Mei, P.; Wu, X.; Hou, C.; Zheng, Y.; Liu, Y.: Micellization of anionic Gemini surfactants and their interaction with polyacrylamide. Colloid Polym. Sci. 292, 2821–2830 (2014). CrossRefGoogle Scholar
  7. 7.
    Pei, X.; Zhao, J.; Ye, Y.; You, Y.; Wei, X.: Wormlike micelles and gels reinforced by hydrogen bonding in aqueous cationic Gemini surfactant systems. Soft Matter. 7, 2953–2960 (2011). CrossRefGoogle Scholar
  8. 8.
    Li, H.; Yang, H.; Yan, Y.; Wang, Q.; He, P.: Synthesis and solution properties of cationic Gemini surfactants with long unsaturated tails. Surf. Sci. 604, 1173–1178 (2010). CrossRefGoogle Scholar
  9. 9.
    Bhadani, A.; Shrestha, R.G.; Koura, S.; Endo, T.; Sakai, K.; Abe, M.; Sakai, H.: Self-aggregation properties of new ester-based Gemini surfactants and their rheological behavior in the presence of cosurfactant–monolaurin. Coll. Surf. A Physicochem. Eng. Asp. 461, 258–266 (2014). CrossRefGoogle Scholar
  10. 10.
    Yang, X.: Rheological properties of salt-free symmetry-quaternary ammonium Gemini surfactants aqueous solutions. Phys. Chem. Liq. 52, 78–87 (2014). CrossRefGoogle Scholar
  11. 11.
    Ge, Y.; Zhang, Q.; Liu, Z.: Synthesis and aggregation behavior of gemini surfactants with piperidinium structure. J. Wuhan Inst. Technol. 39, 231–238 (2017). Google Scholar
  12. 12.
    Akbas, H.; Aylin, E.; Boz, M.: Aggregation and thermodynamic properties of some cationic Gemini surfactants. J. Surfactants Deterg. 15, 33–40 (2012). CrossRefGoogle Scholar
  13. 13.
    Han, L.; Chen, H.; Luo, P.: Viscosity behavior of cationic Gemini surfactants with long alkyl chains. Surf. Sci. 564, 141–148 (2004). CrossRefGoogle Scholar
  14. 14.
    Hong, Y.: Preparation and Performance of Quaternary Ammonium Gemini Surfactant. Shanxi University of Science and Technology, Xi, An (2014)Google Scholar
  15. 15.
    Cui, X.; Chen, H.; Yang, X.; Liu, A.; Mao, S.; Cheng, G.; Yuan, H.; Luo, P.; Du, Y.: Aggregation behavior of quaternary ammonium dimeric surfactant C14-\(s\)-\(\text{ C14 }\cdot 2\text{ Br }\) micelles. Acta Phys.-Chim. Sin 23, 317–321 (2007). CrossRefGoogle Scholar
  16. 16.
    Li, G.; Ren, T.; Wang, Y.; Wu, Y.; Wei, Q.; Xu, J.: Mechanism of viscosity increased by ammonium Gemini surfactant self-assembly. J. Ch. Univ. Pet. (Edit. Nat. Sci.) 40, 3–9 (2016). Google Scholar
  17. 17.
    Liu, Y.; Guo, L.; Bi, K.; Ren, W.; Liu, L.; Li, Y.; Han, L.: Synthesis of cationic Gemini surfactant and its application in water blocking. Fine Spec. Chem. 19, 8–10 (2011). Google Scholar
  18. 18.
    Zana, R.; Xia, J.: Gemini surfactants : synthesis, interfacial and solution-phase behavior, and applications. New York; (2004)Google Scholar
  19. 19.
    Tang, S.; Zhao, C.; Tian, L.; Zhou, T.: Temperature-resistance clean fracturing fluid with carboxylate Gemini surfactant: a case study of tight sandstone gas reservoirs in the Tarim Basin. Nat. Gas Industry 36, 45–51 (2016). Google Scholar
  20. 20.
    Du, X.; Li, L.; Lu, Y.; Yang, Z.: Unusual viscosity behavior of a kind of anionic Gemini surfactant. Colloids Surf. A Physicochem. Eng. Asp. 308, 147–149 (2007). CrossRefGoogle Scholar
  21. 21.
    Zana, R.; Talmon, Y.: Dependence of aggregate morphology on structure of dimeric surfactants. Nature 362, 228–230 (1993). CrossRefGoogle Scholar
  22. 22.
    Huang, Z.; Li, C.; Liang, Y.; Han, S.; Wang, L.: Improvement on the synthetic method of N, \(\text{ N }^\prime \)-dilauroylethylenediamine-diacetic acid. Fine Chem. 36, 47–50 (2002). Google Scholar
  23. 23.
    Hikota, T.; Meguro, K.: Preparation and properties of sodium alkyl \(\upbeta \)-sulfopropionates. J. Am. Oil Chem. Soc. 47, 158–161 (1970)CrossRefGoogle Scholar
  24. 24.
    El-Sukkary, M.M.A.; Shaker, N.O.; Ismail, D.A.; Ahmed, S.M.; Awad, A.I.: Preparation and evaluation of some amide ether carboxylate surfactants. Egypt. J. Pet. 21, 11–17 (2012). CrossRefGoogle Scholar
  25. 25.
    Adewuyi, A.; Göpfert, A.; Wolff, T.: Succinyl amide Gemini surfactant from Adenopus breviflorus seed oil: a potential corrosion inhibitor of mild steel in acidic medium. Ind. Crops Prod. 52, 439–449 (2014)CrossRefGoogle Scholar
  26. 26.
    Hajibeygi, M.; Shafiei-Navid, S.; Shabanian, M.; Vahabi, H.: Novel poly(amide-azomethine) nanocomposites reinforced with polyacrylic acid- co -2-acrylamido-2-methylpropanesulfonic acid modified LDH: Synthesis and properties. Appl. Clay Sci. 157, 165–176 (2018)CrossRefGoogle Scholar
  27. 27.
    Geng, X.F.; Hu, X.Q.; Xia, J.J.; Jia, X.C.: Synthesis and surface activities of a novel di-hydroxyl-sulfate-betaine-type zwitterionic Gemini surfactants. Appl. Surf. Sci. 271, 284–290 (2013). CrossRefGoogle Scholar
  28. 28.
    Ouyang, X.; Tang, S.; Liu, S.; Liang, C.; Hu, X.: Advance in regularity research on critical micelle concentration of Gemini surfactants. Fault-Block Oil Gas Field. 19, 654–657 (2012). Google Scholar
  29. 29.
    Gao, D.; Yu, M.: The comparative study of influence factors of ionic Gemini surfactant solution’s rheology. J. Chongqing Univ. Sci. Technol. (Nat. Sci. Edit.) 14, 101–104 (2012). Google Scholar
  30. 30.
    Zhu, Q.: Study on Synthesis, Properties and Applications in Enhanced Oil Recovery (EOR) of Novel Gemini Surfactant. Chengdu University of Technology, Chengdu (2009)Google Scholar
  31. 31.
    Pi, Y.; Zhang, L.; Liu, Z.; Gao, D.; Tang, S.: Research on rheological properties of sulfuric acid ester salt Gemini surfactant solution. J. Oil Gas Technol. 33, 135–138 (2011). Google Scholar
  32. 32.
    Liao, H.; Tang, S.; Lei, X.; Wang, X.: Effect of spacer group on Gemini surfactants properties. Fine Spec. Chem. 21, 39–42 (2013). Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Zheng Yahui
    • 2
  • Tang Shanfa
    • 1
    • 2
    Email author
  • Wang Jiaxin
    • 2
  • Musa Mpelwa
    • 2
  • Pu Mingzheng
    • 2
  • Zhou Tianyuan
    • 2
  1. 1.Hubei Cooperative Innovation Center of Unconventional Oil and Gas in Yangtze UniversityWuhanChina
  2. 2.School of Petroleum EngineeringYangtze UniversityWuhanChina

Personalised recommendations