Arabian Journal for Science and Engineering

, Volume 44, Issue 5, pp 4783–4794 | Cite as

Removal of Hazardous Cationic Salt Pollutants During Electrochemical Treatment from Contaminated Mixed Heterogeneous Saline Soil

  • Mohammed Mustapha BessaimEmail author
  • Hanifi Missoum
  • Karim Bendani
  • Mohamed Said Bekkouche
  • Nadia Laredj
Research Article - Civil Engineering


Salt-affected soils are found mainly in arid and semiarid regions. In these areas, weak precipitation rate causes salt accumulation at high level on the soil surfaces, leading to drastic modifications in soil properties, affecting hence the environment, human health and civil engineering infrastructure and facilities. This research aimed to study the performance of the electrochemical treatment on removal of hazardous cationic salt including sodium, potassium and magnesium cations. The novelty of this work lies in the investigation of the potential of electroosmosis phenomenon as a driving vector in the removal of cationic hazardous salt during its regularized path toward the cathodic area. Therefore, a controlled-permanent analysis of contaminated catholyte water over processing time was achieved, in order to understand the evolution of contaminant removal during treatment time via the electroosmosis process. For this purpose, five relevant indices were evaluated, including electric current, electroosmotic flow, pH, electrical conductivity and cationic hazardous salt removal efficiency. Experimental tests were conducted in laboratory-designed cell using different electric potential difference for a total period of 8 days. Owing to the electroosmosis phenomenon, salt contaminants migrated and accumulated in the catholyte chamber, facilitating thereby their removal. Among these contaminants, sodium and potassium exhibit the highest decontamination efficiency with a rate of 88 and 85%, respectively. Magnesium ions show moderate removal with a percentage of 53%, due to the pH gradient, degree of hydration, ionic valence and mobility. The results demonstrate that the electrochemical treatment may be an efficient method for remediation of saline low-permeable heterogeneous soils.


Electrochemical treatment Electroosmosis phenomenon Remediation Saline heterogeneous soil Cationic hazardous salt 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the chemical department for their help in this research. The authors, therefore, acknowledge with thanks the Environmental Research Council for their technical support.


  1. 1.
    Abrol, I.P.; Yadav, J.S.P.; Massoud, F.I.: Salt-Affected Soils and Their Management, vol. 39. FAO Soils Bulletin. Food and Agriculture Organization of the United Nations, Rome (1988)Google Scholar
  2. 2.
    Evangelou, V.P.: Environmental Soil and Water Chemistry: Principles and Applications. Wiley, New York (1998)Google Scholar
  3. 3.
    Hamdan, S.H.; Molelekwa, G.F.; Bruggen, B.V.: Electrokinetic remediation technique: an integrated approach to finding new strategies for restoration of saline soil and to control seawater intrusion. ChemElectroChem 1, 1104–1117 (2014). CrossRefGoogle Scholar
  4. 4.
    Lukman, S.; Mu’azu, N.D.; Essa, M.H.; Usman, A.: Optimal removal of cadmium from heavily contaminated saline–sodic soil using integrated electrokinetic adsorption technique. Arab. J. Sci. Eng. 40, 1289–1297 (2015)CrossRefGoogle Scholar
  5. 5.
    Sonon, L.S.; Saha, U.; Kissel, D.E.: Soil Salinity, Testing, Data Interpretation and Recommendations. The University of Georgia, Cooperative Extension, College of Agricultural and Environmental Sciences, Circular No. 1019 (2012)Google Scholar
  6. 6.
    Khanamani, A.; Fathizad, H.; Karimi, H.; Shojaei, S.: Assessing desertification by using soil indices. Arab. J. Geosci. 10, 287 (2017). CrossRefGoogle Scholar
  7. 7.
    Jayasekera, S,: Stabilising volume change characteristics of expansive soils using electrokinetics: a laboratory based investigation. In: International Conference in Geotechnical Engineering: Colombo, Sri Lanka (2007)Google Scholar
  8. 8.
    Cui, Y.J.; Zhu, Y.G.; Zhai, R.H.; Huang, Y.Z.; Qiu, Y.; Liang, J.Z.: Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China. Environ. Int. 31, 784–790 (2005)CrossRefGoogle Scholar
  9. 9.
    Yang, J.S.; Kwon, M.J.; Choi, J.; Baek, K.; O’Loughlin, E.J.: The transport behavior of As, Cu, Pb, and Zn during electrokinetic remediation of a contaminated soil using electrolyte conditioning. Chemosphere 117, 79–86 (2014)CrossRefGoogle Scholar
  10. 10.
    Bahemmat, M.; Farahbakhsh, M.; Shabani, F.: Compositional and metabolic quotient analysis of heavy metal contaminated soil after electroremediation. Environ. Earth Sci. 74, 4639–4648 (2015)CrossRefGoogle Scholar
  11. 11.
    Yuan, L.; Li, H.; Xu, X.; Zhang, J.; Wang, N.; Yu, H.: Electrokinetic remediation of heavy metals contaminated kaolin by a CNT-covered polyethylene terephthalate yarn cathode. Electrochim. Acta 213, 140–147 (2016)CrossRefGoogle Scholar
  12. 12.
    Ma, L.Q.; Komar, K.M.; Tu, C.; Zhang, W.H.; Cai, Y.; Kennelley, E.D.: A fern that hyperaccumulates arsenic. Nature 411, 438–438 (2001)CrossRefGoogle Scholar
  13. 13.
    Libralato, G.; Losso, C.; Arizzi Novelli, A.; Citron, M.; Della Sala, S.; Zanotto, E.; Cepak, F.; Volpi Ghirardini, A.: Ecotoxicological evaluation of industrial port of Venice (Italy) sediment samples after a decontamination treatment. Environ. Pollut. 156, 644–650 (2008)CrossRefGoogle Scholar
  14. 14.
    Ammami, M.T.; Portet-Koltalo, F.; Benamar, A.; Duclairoir-Poc, C.; Wang, H.; Le Derf, F.: Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments. Chemosphere 125, 1–8 (2015)CrossRefGoogle Scholar
  15. 15.
    DNRE, The state of water, Department of Natural Resources and environment, The state of Victoria (2002)Google Scholar
  16. 16.
    Reddy, K.R.; Shirani, A.B.: Electrokinetic remediation of metal contaminated glacial tills. Geotech. Geol. Eng. 15, 3–29 (1997)Google Scholar
  17. 17.
    Alshawabkeh, A.N.: Basics and application of electrokinetic remediation. In: Handouts Prepared for a Short Course. Federal University of Rio de Janeiro, Rio de Janeiro (2001)Google Scholar
  18. 18.
    Jayasekera, S.; Hall, S.: Modification of the properties of salt affected soils using electrochemical treatments. Geotech. Geol. Eng. 25, 1–10 (2007)CrossRefGoogle Scholar
  19. 19.
    Lukman, S.; Essa, M.H.; Mu’azu, N.D.; Bukhari, A.: Coupled electrokinetics-adsorption technique for simultaneous removal of heavy metals and organics from saline-sodic soil. Sci. World J. 2013, 346910 (2013). CrossRefGoogle Scholar
  20. 20.
    Mu’azu, N.D.; Essa, M.H.; Lukman, S.: Response surface modeling of rate of replenishing processing fluids during hybrid electrokinetics-adsorption treatment of saline–sodic soil. Arab. J. Sci. Eng. 40, 1–11 (2016)Google Scholar
  21. 21.
    Acar, Y.B.; Alshawabkeh, A.: Principles of electrokinetic remediation. Environ. Sci. Technol. 27(13), 2638–2647 (1993)CrossRefGoogle Scholar
  22. 22.
    Virkutyte, J.; Sillanpaa, M.; Latostenmaa, P.: Electrokinetic soil remediation critical overview. Sci. Total Environ. 289, 97–121 (2002)CrossRefGoogle Scholar
  23. 23.
    Paramkusam, B.R.; Srivastava, R.K.; Mohan, D.: Electrokinetic removal of mixed heavy metals from a contaminated low permeable soil by surfactant and chelants. Environ. Earth Sci. 73, 1191–1204 (2015). CrossRefGoogle Scholar
  24. 24.
    Drogui, P.; Blais, J.F.; Mercier, G.: Review of electrochemical technologies for environmental applications. Recent Pat. Eng. 1, 257–272 (2007)CrossRefGoogle Scholar
  25. 25.
    Karim, M.A.: Electrokinetics and soil decontamination: concepts and overview. J. Electrochem. Sci. Eng. 4(4), 297–313 (2014)CrossRefGoogle Scholar
  26. 26.
    López-Vizcaíno, R.; Yustres, A.; León, M.J.; Saez, C.; Cañizares, P.; Rodrigo, M.A.; Navarro, V.: Multiphysics implementation of electrokinetic remediation models for natural soils and porewaters. Electrochim. Acta 225, 93–104 (2017)CrossRefGoogle Scholar
  27. 27.
    Cameselle, C.; Reddy, K.R.: Development and enhancement of electro-osmotic flow for the removal of contaminants from soils. Electrochim. Acta. 86, 10–22 (2012)CrossRefGoogle Scholar
  28. 28.
    Moayedi, H.; Kassim, K.A.; Kazemian, S.; Raftari, M.; Mokhberi, M.: Improvement of peat using Portland cement and electrokinetic injection technique. Arab. J. Sci. Eng. 39(10), 6851–6862 (2014)CrossRefGoogle Scholar
  29. 29.
    Pamukcu, S.; Weeks, A.; Wittle, J.K.: Electrochemical extraction and stabilization of selected inorganic species in porous media. J. Hazard. Mater. 55, 305–318 (1997)CrossRefGoogle Scholar
  30. 30.
    Lestan, D.; Lu, C.L.; Li, X.D.: The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ. Pollut. 153, 3–13 (2008)CrossRefGoogle Scholar
  31. 31.
    Bongay, D.J.R.; Ngo, R.L.: Electroremediation of Cu-contaminated soil. Int. J. Chem. Biol. Eng. 6, 96–101 (2012)Google Scholar
  32. 32.
    Wu, H.; Hu, L.M.; Wen, Q.B.: Electro-osmotic enhancement of bentonite with reactive and inert electrodes. Appl. Clay Sci. 111(7), 76–82 (2015)CrossRefGoogle Scholar
  33. 33.
    Mitchell, J.K.; Soga, K.: Fundamentals of Soil Behavior, 3rd edn. Wiley, New York (2005)Google Scholar
  34. 34.
    Yukselen-Aksoy, Y.; Reddy, K.R.: Effect of soil composition on electrokinetically enhanced persulfate oxidation of polychlorobiphenyls. Electrochim. Acta 86, 164–169 (2012)CrossRefGoogle Scholar
  35. 35.
    Li, D.; Tan, X.Y.; Wu, X.D.; Pan, C.; Xu, P.: Effects of electrolyte characteristics on soil conductivity and current in electrokinetic remediation of lead-contaminated soil. Sep. Purif. Technol. 135, 14–21 (2014)CrossRefGoogle Scholar
  36. 36.
    Maturi, K.; Reddy, K.R.: Simultaneous removal of heavy metals and organic contaminants from soils by electrokinetics using a modified cyclodextrin. Chemosphere 63(6), 1022–1031 (2006)CrossRefGoogle Scholar
  37. 37.
    Cameselle, C.; Chirakkara, R.A.; Reddy, K.R.: Electrokinetic-enhanced phytoremediation of soils: status and opportunities. Chemosphere 93(4), 626–63 (2013)CrossRefGoogle Scholar
  38. 38.
    INSID (2008) Les sols salins en Algérie. Institut national des sols, de l’irrigation et du drainageGoogle Scholar
  39. 39.
  40. 40.
    Miller, J.C.; Miller, J.N.: Statistics and Chemometrics for Analytical Chemistry, 4th edn. Prentice Hall, Harlow (2000)zbMATHGoogle Scholar
  41. 41.
    Hamed, J.; Acar, Y.B.; Gale, R.J.: Pb (II) removal from kaolinite by electro-kinetics. J. Geotech. Eng. 117, 241–270 (1991)CrossRefGoogle Scholar
  42. 42.
    Cho, J.; Park, S.; Baek, K.: Electrokinetic restoration of saline agricultural lands. J. Appl. Electrochem. 40, 1085–1093 (2010)CrossRefGoogle Scholar
  43. 43.
    Cameselle, C.: Enhancement of electro-osmotic flow during the electrokinetic treatment of a contaminated soil. Electrochim. Acta 181, 31–38 (2015)CrossRefGoogle Scholar
  44. 44.
    Hamed, J.T.: Decontamination of soil using electro-osmosis. PhD dissertation, Louisiana State University, p. 194 (1990).Google Scholar
  45. 45.
    Li, T.; Guo, S.; Wu, B.; Li, F.; Niu, Z.: Effect of electric intensity on the microbial degradation of petroleum pollutants in soil. J. Environ. Sci. 22, 1381–1386 (2010)CrossRefGoogle Scholar
  46. 46.
    Peng, C.; Almeira, J.O.; Gu, Q.: Effect of electrode configuration on pH distribution and heavy metal ions migration during soil electrokinetic remediation. Environ. Earth Sci. 69(1), 257–265 (2013)CrossRefGoogle Scholar
  47. 47.
    Altaee, A.; Smith, R.; Mikhalovsky, S.: The feasibility of decontamination of reduced saline sediments from copper using the electrokinetic process. J. Environ. Manag. 88, 1611–1618 (2008)CrossRefGoogle Scholar
  48. 48.
    Choi, J.; Lee, Y.; Lee, H.; Ha, T.; Bae, J.: Removal characteristics of salts of greenhouse in field test by in situ electrokinetic process. Electrochim. Acta 86, 63–71 (2012)CrossRefGoogle Scholar
  49. 49.
    Lee, Y.J.; Choi, J.H.; Lee, H.G.; Ha, T.H.: In situ electrokinetic removal of salts from greenhouse soil using iron electrode. Sep. Sci. Technol. 48, 749–756 (2013)CrossRefGoogle Scholar
  50. 50.
    Zhu, S.; Zhu, D.; Wang, X.: Removal of fluorine from red mud (bauxite residue) by electrokinetics. Electrochim. Acta 242, 300–306 (2017)CrossRefGoogle Scholar
  51. 51.
    Abou-Shady, A.: Reclaiming salt-affected soils using electro-remediation technology: PCPSS evaluation. Electrochim. Acta 190, 511–520 (2016)CrossRefGoogle Scholar
  52. 52.
    Soltner, D.: Les bases de la production végétale. Tome 1: le sol. Collection Sciences et Techniques Agricoles, 19ème édition, Sainte Gemmes sur Loire (1992)Google Scholar
  53. 53.
    Atkins, P.W.: Physical Chemistry, 4th ed., pp. 755–756 and 963. Freeman, San Francisco (1990)Google Scholar
  54. 54.
    Dean, J.A.: Lange’s Handbook of Chemistry, 14th edn. McGraw-Hill, New York (1992)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Mohammed Mustapha Bessaim
    • 1
    • 2
    Email author
  • Hanifi Missoum
    • 1
    • 2
  • Karim Bendani
    • 1
    • 2
  • Mohamed Said Bekkouche
    • 1
  • Nadia Laredj
    • 1
    • 2
  1. 1.Civil Engineering and Architecture Department, Faculty of Sciences and TechnologyUniversity Abdelhamid Ibn Badis of MostaganemMostaganemAlgeria
  2. 2.Construction, Transport and Protection of Environment LaboratoryMostaganemAlgeria

Personalised recommendations