Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 613–621 | Cite as

Study of Structural, Magnetic and Optical Properties of \(\hbox {BiFeO}_{3}{-}\hbox {PbTiO}_{3}\) Multiferroic Composites

  • Mohammad ShariqEmail author
  • Davinder Kaur
  • Vishal Singh Chandel
  • Praveen K. Jain
  • Sasi Florence
  • Mukul Sharma
  • Shahir Hussain
Research Article - Physics


The crystalline samples of lead titanate altered bismuth ferrite (\(\hbox {BiFeO}_{3})_{1-{x}}(\hbox {PbTiO}_{3})_{{x}}\) [\(x= 0, 0.1, 0.2, 0.3, 0.4\) and 0.5] have been synthesized by high-temperature solid-state reaction technique. The formation of the materials was affirmed through fundamental investigation utilizing X-ray diffraction which uncovers the presence of morphotropic phase boundary (MPB) in composite. XRD examination displays structural change from rhombohedral (\(x=0.0\)) to tetragonal (\(x=0.4\)). Estimated grain size along (104) peak was observed to be diminished with the increase in content of \(\hbox {PbTiO}_{3}\) due to mixing of tetragonal phases. SEM and EDAX of sample were carried out for analysis of surface morphology and verification of chemical homogeneity, respectively. Study of M-H graph reveals antiferromagnetic nature of \(\hbox {BiFeO}_{3}\). Magnetic measurement of (\(\hbox {BiFeO}_{3})_{1-{x}}(\hbox {PbTiO}_{3})_{{x}}\) ceramics shows weak-induced ferromagnetism by substituent effects at temperature of 5 K. Low-temperature magnetic measurement under ZFC reveals an anomaly in tetragonal phase of MPB for composition \(x=0.2\) and 0.3. With respect to \(\hbox {BiFeO}_{3}\), \(\hbox {BiFeO}_{3}{-}\hbox {PbTiO}_{3}\) ceramics displays advancement in the electric polarization. Direct and indirect band gaps are modified with variation of \(\hbox {PbTiO}_{3}\) in \(\hbox {BiFeO}_{3}{-}\hbox {PbTiO}_{3}\) composites.


\((\hbox {BiFeO}_{3})_{1-{x}}(\hbox {PbTiO}_{3})_{{x}}\) ceramics Antiferromagnetic Multiferroic SQUID 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eerenstein, W.; Mathur, N.D.; Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)CrossRefGoogle Scholar
  2. 2.
    Cheong, S.W.; Mostovoy, M.: Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007)CrossRefGoogle Scholar
  3. 3.
    Remesh, R.; Spaldin, N.A.: Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 20–28 (2007)Google Scholar
  4. 4.
    Shariq, M.; Kaur, D.; Chandel, V.C.: Structural, magnetic and optical properties of mulitiferroic (\(\text{ BiFeO }_{3})_{1- x}(\text{ BaTiO }_{3})_{{x}}\) solid solutions. Chin. J. Phys. 55, 2192–2198 (2017)CrossRefGoogle Scholar
  5. 5.
    Panda, N.; Pattanayak, S.; Choudhary, R.N.P.: Structural and electrical properties of \(\text{ BiFeO }_{3}{-}\text{ PbTiO }_{3}\) system. J. Mater. Sci. Mater. Electron. 26, 4069–4077 (2015)CrossRefGoogle Scholar
  6. 6.
    Yun, K.Y.; Noda, M.; Okuyama, M.: Prominent ferroelectricity of \(\text{ BiFeO }_{3}{-}\text{ BiFeO }_{3}\) thin films prepared by pulsed-laser deposition. Appl. Phys. Lett. 83, 3981–3984 (2003)CrossRefGoogle Scholar
  7. 7.
    Comyn, T.P.; Stevenson, T.; Bell, A.J.: Piezoelectric properties of BiFeO–PbTiO ceramics. J. Phys. IV Fr. 128, 13–17 (2005)CrossRefGoogle Scholar
  8. 8.
    Yun, K.Y.; Ricinschi, D.; Kanashima, T.; Noda, M.; Okuyama, M.: Giant ferroelectric polarization beyond \(150\,\upmu \text{ C }/\text{ cm }^{2}\) in \(\text{ BiFeO }_{3}\) thin film. Jpn. J. Appl. Phys. 2(43), L647–648 (2004)CrossRefGoogle Scholar
  9. 9.
    Li, J.; Wang, J.; Wutting, M.; Ramesh, R.; Wang, N.; Ruette, B.; Pyatakov, A.P.; Zvedin, A.K.; Viehland, D.: Dramatically enhanced polarization in (001)(001), (101)(101), and (111) (111) \(\text{ BiFeO }_{3}{-}\text{ BiFeO }_{3}\) thin films due to epitiaxial-induced transitions. Appl. Phys. Lett. 84, 5261–5263 (2004)CrossRefGoogle Scholar
  10. 10.
    Zhang, S.T.; Lu, M.S.; Wu, D.; Chen, Y.F.; Ming, N.B.: Larger polarization and weak ferromagnetism in quenched ceramics with a distorted rhombohedral crystal structure. Appl. Phys. Lett. 87, 262907–3 (2005)CrossRefGoogle Scholar
  11. 11.
    Shariq, M.; Kaur, D.; Chandel, V.C.; Siddiqui, M.A.: Electrical, surface morphology and magneto-capacitance properties of Pb free multiferroic (\(\text{ BiFeO }_{3})_{1-{x}}(\text{ BaTiO }_{3})_{{x}}\) solid solutions. Acta Phys. Polon. A 127, 1679–1679 (2015)Google Scholar
  12. 12.
    Shariq, M.; Kaur, D.; Chandel, V.C.; Siddiqui, M.A.: Investigation on multiferroic properties of \(\text{ BiFeO }_{3}\) ceramics. Mater. Sci. Pol. 31, 471–475 (2013)CrossRefGoogle Scholar
  13. 13.
    Sosnowska, I.; Loewenhaupt, M.; David, W.I.F.; Ibberson, R.: Investigation of the unusual magnetic spiral arrangement in \(\text{ BiFeO }_{3}\). Phys. B 117, 180–181 (1982)Google Scholar
  14. 14.
    Wang, J.; Neaton, J.B.; Zheng, H.; Nagarajan, V.; Ogale, S.B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D.G.; Waghmare, V.U.; Spaldin, N.A.; Rabe, K.M.; Wuttig, M.; Ramesh, R.: Epitaxial \(\text{ BiFeO }_{3}\) multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)CrossRefGoogle Scholar
  15. 15.
    Dai, X.H.; Xu, Z.; Viehland, D.: The spontaneous relaxor to normal ferroelectric transformation in La-modified lead zirconate titanate. Philos. Mag. B 70, 33–48 (1994)CrossRefGoogle Scholar
  16. 16.
    Kleemann, W.: Random-field induced antiferromagnetic, ferroelectric and structural domain states. Int. J. Mod. Phys. B 7, 2469–2507 (1993)CrossRefGoogle Scholar
  17. 17.
    Wang, Y.P.; Zhou, L.; Zhang, M.F.; Chen, X.Y.; Liu, J.M.; Liu, Z.G.: Room-temperature saturated ferroelectric polarization in \(\text{ BiFeO }_{3}\text{ BiFeO }_{3}\) ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett. 84, 1731–1733 (2004)CrossRefGoogle Scholar
  18. 18.
    Behera, C.; Choudhary, R.N.P.; Das, P.R.: Structural and electrical properties of La-modified \(\text{ BiFeO }_{3}{-}\text{ BaTiO }_{3}\) composites. J. Mater. Sci. Mater. Electron. 25, 2086–2095 (2014)CrossRefGoogle Scholar
  19. 19.
    Wu, Y.J.; Chen, X.K.; Zhang, J.; Chen, X.J.: Magnetic enhancement across a ferroelectric-antiferroelectric phase boundary in \(\text{ Bi }_{1-{x}}\text{ Nd }_{{x}}\text{ FeO }_{3}\). J. Appl. Phys. 111, 053927-5 (2012)Google Scholar
  20. 20.
    Kawae, T.; Terauchi, Y.; Tsuda, H.; Kumeda, M.: Improved leakage and ferroelectric properties of Mn and Ti codoped thin films. Appl. Phys. Lett. 94, 112904–3 (2009)CrossRefGoogle Scholar
  21. 21.
    Wu, M.S.; Huang, Z.B.; Han, C.X.; Yuan, S.L.; Lu, C.L.; Xia, S.C.: Enhanced multiferroic properties of \(\text{ BiFeO }_{3}\) ceramics by Ba and high-valence Nb co-doping. Solid State Commun. 152, 2142–2146 (2012)CrossRefGoogle Scholar
  22. 22.
    Sakamoto, W.H.; Yamazaki, W.H.; Iwata, A.; Shimura, T.; Yogo, T.: Synthesis and characterization of \(\text{ BiFeO }_{3}{-}\text{ PbTiO }_{3}\) thin films through metalorganic precursor solution. Jpn. J. Appl. Phys. 45, 7315–7320 (2006)CrossRefGoogle Scholar
  23. 23.
    Pradhan, S.K.; Das, S.N.; Bhuyan, S.; Behera, C.; Padhee, R.; Choudhary, R.N.P.: Structural, dielectric and impedance characteristics of lanthanum-modified \(\text{ BiFeO }_{3}{-}\text{ PbTiO }_{3}\) electronic system. Appl. Phys. A 122, 604–9 (2016)CrossRefGoogle Scholar
  24. 24.
    Pradhan, S.K.; Das, S.N.; Bhuyan, S.; Behera, C.; Choudhary, R.N.P.: Structural and electrical properties of lead reduced lanthanum modified \(\text{ BiFeO }_{3}{-}\text{ PbTiO }_{3}\) solid solution. J. Mater. Sci. Mater. Electron. 28, 1186–1198 (2017)CrossRefGoogle Scholar
  25. 25.
    Burnett, T.L.; Comyn, T.P.; Bell, A.J.: Flux growth of \(\text{ BiFeO }_{3}{-}\text{ PbTiO }_{3}\) single crystals. J. Cryst. Growth 258, 156–161 (2005)CrossRefGoogle Scholar
  26. 26.
    PCPDFWIN: International Centre for Diffraction Data, 12 Campus Blvd., Newtown Square PA 19073-3273 U.S.AGoogle Scholar
  27. 27.
    Naheda, B.; Cox, D.E.; Shirane, G.; Gonzala, J.A.; Cross, L.E.; Park, S.E.: A monoclinic ferroelectric phase in the \(\text{ Pb }(\text{ Zr }_{1-{x}}\text{ Ti }_{{x}})\text{ O }_{3}\) solid solution. Appl. Phys. Lett. 74, 2059–2061 (1999)CrossRefGoogle Scholar
  28. 28.
    Guo, R.; Crosss, L.E.; Park, S.E.; Noheda, B.; Cox, D.E.; Shirane, G.: Origin of the high piezoelectric response in \(\text{ PbZr }_{1-{x}}\text{ Ti }_{{x}}\text{ O }_{3}\). Phys. Rev. Lett. 84, 5423–5426 (2000)CrossRefGoogle Scholar
  29. 29.
    Catalan, G.; Scott, J.F.: Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)CrossRefGoogle Scholar
  30. 30.
    Kumar, M.M.; Srinath, S.; Kumar, G.S.; Suryanarayana, S.V.: Spontaneous magnetic moment in \(\text{ BiFeO }_{3}{-}\text{ BaTiO }_{3}\) solid solutions at low temperatures. J. Magn. Magn. Mater. 188, 203–212 (1998)CrossRefGoogle Scholar
  31. 31.
    Gehring, G.A.: On the microscopic theory of the magnetoelectric effect. Ferroelectrics 61, 275–285 (1994)CrossRefGoogle Scholar
  32. 32.
    Chen, D.H.; Chen, Y.Y.: Synthesis of barium ferrite ultrafine particles by coprecipitation in the presence of polyacrylic acid. J. Colloid Interface Sci. 235, 9–14 (2001)CrossRefGoogle Scholar
  33. 33.
    Smolenskiĭ, G.A.; Chupis, I.E.: Ferroelectromagnets. Sov. Phys. Uspekhi 25, 475–493 (1982)CrossRefGoogle Scholar
  34. 34.
    Zhu, W.M.; Guo, H.Y.; Ye, Z.G.: Structural and magnetic characterization of multiferroic (\(\text{ BiFeO }_{3})_{1-{x}}\) (\(\text{ PbTiO }_{3})_{{x}}\) solid solutions. Phys. Rev. B 78, 014401–10 (2008)CrossRefGoogle Scholar
  35. 35.
    Zhu, W.M.; Guo, H.Y.; Ye, Z.G.: Structure and properties of multiferroic \((1-x)\text{ BiFeO }_{3}\) \(x\text{ PbTiO }_{3}\) single crystals. J. Mater. Res. 22, 2136–2143 (2007)CrossRefGoogle Scholar
  36. 36.
    Das, S.R.; Choudhary, R.N.P.; Bhattacharya Katiyara, P.R.S.; Dutta, P.; Manivannan, A.; Seehra, M.S.: Structural and multiferroic properties of La-modified ceramics. J. Appl. Phys. 101, 034104–7 (2007)CrossRefGoogle Scholar
  37. 37.
    Sakamoto, W.; Iwata, A.; Yogo, T.: Ferroelectric properties of chemically synthesized perovskite thin films. J. Appl. Phys. 104, 104106–8 (2008)CrossRefGoogle Scholar
  38. 38.
    Tauc, J. (ed.): Amorphous and Liquid Semiconductor. Plenium Press, New York (1974)Google Scholar
  39. 39.
    Gujar, T.P.; Shinde, V.R.; Lokhande, C.D.: Nanocrystalline and highly resistive bismuth ferric oxide thin films by a simple chemical method. Mater. Chem. Phys. 103, 142–146 (2007)CrossRefGoogle Scholar
  40. 40.
    Fruth, V.; Tenea, E.; Gartner, M.; Anastasescu, M.; Berger, D.; Ramer, R.; Zaharescu, M.: Preparation of \(\text{ BiFeO }_{3}\) films by wet chemical method and their characterization. J. Eur. Ceram. Soc. 27, 937–940 (2007)CrossRefGoogle Scholar
  41. 41.
    Ihlefeld, J.F.; Podraza, N.J.; Liu, Z.K.; RaiR, C.; Xu, X.; Heeg, T.; Chen, Y.B.; Li, J.; Collins, R.W.; Musfeldt, J.L.; Pan, X.Q.; Schubert, J.; Ramesh, R.; Schlom, D.G.: Optical band gap of grown by molecular-beam epitaxy. Appl. Phys. Lett. 92, 142908–3 (2008)CrossRefGoogle Scholar
  42. 42.
    Xu, Y.; Shen, M.: Structure and optical properties of nanocrystalline \(\text{ BiFeO }_{3}\) films prepared by chemical solution deposition. Mater. Lett. 62, 3600–3602 (2008)CrossRefGoogle Scholar
  43. 43.
    Clark, S.J.; Robertson, J.: Band gap and Schottky barrier heights of multiferroic \(\text{ BiFeO }_{3}\). Appl. Phys. Lett. 90, 132903–3 (2007)CrossRefGoogle Scholar
  44. 44.
    Catalan, G.; Scott, J.F.: Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)CrossRefGoogle Scholar
  45. 45.
    Liu, K.; Fan, H.; Ren, P.; Yang, C.: Structural, electronic and optical properties of BiFeO3 studied by first-principles. J. Alloys Compd. 509, 1901–1905 (2011)CrossRefGoogle Scholar
  46. 46.
    Chena, Y.; Zhoua, X.; Zhaoa, X.; Hea, X.; Gub, X.: Crystallite structure, surface morphology and optical properties of \(\text{ In }_{2}\text{ O }_{3}{-}\text{ TiO }_{2}\) composite thin films by sol-gel method. Mater. Sci. Eng. B 151, 179–186 (2008)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of scienceJazan UniversityJazanSaudi Arabia
  2. 2.Functional Nanomaterials Research Laboratory, Department of Physics and Centre of NanotechnologyIndian Institute of TechnologyRoorkeeIndia
  3. 3.Department of Applied Science and HumanitiesRajkiye Engineering CollegeAmbedkar NagarIndia
  4. 4.Swami Keshvanand Institute of Technology, Management and GramothanJaipurIndia
  5. 5.Centre for Environmental Research and StudiesJazan UniversityJazanSaudi Arabia
  6. 6.Department of Electrical EngineeringJazan UniversityJazanSaudi Arabia

Personalised recommendations