Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 251–257 | Cite as

Electrospun Polyvinyl Alcohol Nanofibers Containing Titanium Dioxide for Gas Sensor Applications

  • Gomaa F. El FawalEmail author
  • H. Shokry HassanEmail author
  • Mohamed R. El-Aassar
  • Marwa F. Elkady
Research Article - Chemistry
  • 60 Downloads

Abstract

Electrospun nanofibers for gas sensor application were effectively prepared from polyvinyl alcohol and pluronic solution with different percentages of titanium dioxide (\(\hbox {TiO}_{2}\)) nanoparticles. Nanofibers membrane was subject to detailed analysis by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA). Adding \(\hbox {TiO}_{2}\) nanoparticles to the blended solution increased nanofibers diameters from \(280 \pm 20\) to \(310 \pm 30\ \hbox {nm}\). The gas sensor response of \(\hbox {TiO}_{2}\) nanofibers (as a function of temperature) was estimated toward liquid petroleum gas (LPG), \(\hbox {CO}_{2}\), and \(\hbox {O}_{2}\) and compared with pure nanofibers. The maximum response value (100%) was obtained for LPG at \(160\,{^{\circ }}\hbox {C}\) with \(\hbox {TiO}_{2}\) nanofibers (0.01%). These results show promising gas sensing characteristics (such as lower operating temperatures and sufficient gas responses) for those nanofibers materials.

Keywords

Nanofibers Gas sensors Polyvinyl alcohol Titanium dioxide Liquid petroleum gas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sharma, S.; Madou, M.: A new approach to gas sensing with nanotechnology. Philos. Trans. R. Soc. A. 370, 2448–2473 (2018)CrossRefGoogle Scholar
  2. 2.
    Deng, X.; Zhang, L.; Guo, J.; Chen, Q.; Ma, J.: ZnO enhanced NiO-based gas sensors towards ethanol. Mater. Res. Bull. 90, 170–174 (2017)CrossRefGoogle Scholar
  3. 3.
    Zhou, Z.; Yan, R.; Zhao, J.; Yang, L.; Chen, J.; Hu, Y.; Jiang, F.; Liu, Y.: Highly selective and sensitive detection of \(\text{ Hg }^{2+}\) based on fluorescence enhancement of Mn-doped ZnSe QDs by \(\text{ Hg }^{2+}\)-\(\text{ Mn }^{2+}\) replacement. Sens. Actuator B Chem. 254, 8–15 (2018)CrossRefGoogle Scholar
  4. 4.
    Shokry, H.; Kashyout, A.B.; Morsi, I.; Nasser, A.; Raafat, A.: Development of polypyrrole coated copper nanowires for gas sensor application. Sens. Bio Sens. Res. 5, 50–54 (2015)CrossRefGoogle Scholar
  5. 5.
    Shokry, H.; Kashyout, A.B.; Morsi, I.; Nasser, A.; Abuklill, H.: Fabrication and characterization of gas sensor micro-arrays. Sens. Bio Sens. Res. 1, 34–40 (2014)CrossRefGoogle Scholar
  6. 6.
    Ilaria, F.; Iole, V.; Cesare, C.; Maria, V.: Chemiresistive polyaniline-based gas sensors: a mini review. Sens. Actuator B Chem. 220, 534–548 (2015)CrossRefGoogle Scholar
  7. 7.
    Mironenko, A.; Sergeev, A.; Nazirov, A.; Modin, E.B.; Voznesenskiy, S.; Bratskay, S.: \(\text{ H }_{2}\text{ S }\) optical waveguide gas sensors based on chitosan/Au and chitosan/Ag nanocomposites. Sens. Actuator B Chem. 225, 348–353 (2016)CrossRefGoogle Scholar
  8. 8.
    El Aassar, M.R.; Fouda, M.M.; Kenawy, E.R.: Electrospinning of functionalized copolymer nanofibers from poly (acrylonitrile-co-methyl methacrylate). Adv. Polym. Tech. 32, 1–11 (2013)CrossRefGoogle Scholar
  9. 9.
    Hassan, H.S.; El-Kady, M.F.; Farghali, A.A.; Salem, A.M.; Abd El-Hamid, A.I.: Fabrication of novel magnetic zinc oxide cellulose acetate hybrid nano-fiber to be utilized for phenol decontamination. J. Taiwan. Inst. Chem. Eng. 78, 307–316 (2017)CrossRefGoogle Scholar
  10. 10.
    Huang, Z.M.; Zhang, Y.Z.; Kotaki, M.; Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223–2253 (2003)CrossRefGoogle Scholar
  11. 11.
    Ding, B.; Kim, J.; Miyazaki, Y.; Shiratori, S.: Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for \(\text{ NH }_{3}\) detection. Sens. Actuat. B Chem. 101, 373–380 (2004)CrossRefGoogle Scholar
  12. 12.
    Ding, B.; Kikuchi, M.; Shiratori, S.: Electrospun nanofibrous polyelectrolytes membranes as high sensitive coatings for QCM-based gas sensors. In: Dirote, E.V. (ed.) Nanotechnology at the Leading Edge, pp. 1–28. Nova Science Publishers, New York (2006)Google Scholar
  13. 13.
    Yang, A.; Tao, X.; Wang, R.: Room temperature gas sensing properties of \(\text{ SnO }_{2}\)/multiwall-carbon-nanotube composite nanofibers. Appl. Phys. Lett. 91, 133110 (2007)CrossRefGoogle Scholar
  14. 14.
    Wang, G.; Ji, Y.; Huang, X.; Yang, X.; Gouma, P.; Dudley, M.: Fabrication and characterization of polycrystalline \(\text{ WO }_{3}\) nanofibers and their application for ammonia sensing. J. Phys. Chem. B 110, 23777–23782 (2006)CrossRefGoogle Scholar
  15. 15.
    Sheha, E.; Mansy, M.K.: A high voltage magnesium battery based on \(\text{ H }_{2}\text{ SO }_{4}\)-doped (PVA) 0.7 (NaBr) 0.3 solid polymer electrolyte. J. Power. Sour. 185, 1509–1513 (2008)CrossRefGoogle Scholar
  16. 16.
    El Fawal, G.; Yassin, A.; El-Deeb, N.: The novelty in fabrication of polyvinyl alcohol/\(\kappa \)-carrageenan hydrogel with lactobacillus Bulgaricus extract as anti-inflammatory wound dressing agent. AAPS PharmSciTech 18, 1–12 (2017)CrossRefGoogle Scholar
  17. 17.
    El-Aassar, M.; El Fawal, G.; El-Deeb, N.; Hassan, S.; Mo, X.: Electrospun polyvinyl alcohol/pluronic F127 blended nanofibers containing titanium dioxide for antibacterial wound dressing. Appl. Biochem. Biotechnol. 178, 1488–1502 (2017)CrossRefGoogle Scholar
  18. 18.
    Winterton, L.C.; Lally, J.M.; Sentell, K.B.; Chapoy, L.L.: The elution of poly (vinyl alcohol) from a contact lens: the realization of a time release moisturizing agent/artificial tear. J. Biomed. Mater. Res. B. 80, 424–32 (2007)CrossRefGoogle Scholar
  19. 19.
    Yang, X.; Liu, Q.; Chen, X.; Yu, F.; Zhu, Z.: Investigation of PVA/ws-chitosan hydrogels prepared by combined gama-irradiation and freeze-thawing. Carbohydr. Polym. 73, 401–408 (2008)CrossRefGoogle Scholar
  20. 20.
    Bhajantri, R.F.; Ravindrachary, V.; Harisha, A.; Crasta, V.; Suresh, P.N.; Boja, P.: Microstructural studies on \(\text{ BaCl }_{2}\) doped poly(vinyl alcohol). Polymer 47, 3591–3598 (2006)CrossRefGoogle Scholar
  21. 21.
    Chiappetta, D.A.; Sosnik, A.: Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs. Eur. J. Pharm. Biopharm. 66, 303–317 (2007)CrossRefGoogle Scholar
  22. 22.
    Yong-Yong, L.; Lan, L.; Hai-Qing, D.; Xiao-Jun, C.; Tian-Bin, R.: Pluronic F127 nanomicelles engineered with nuclear localized functionality for targeted drug delivery. Mater. Sci. Eng. C. 33, 2698–2707 (2013)CrossRefGoogle Scholar
  23. 23.
    Gombotz, W.R.; Pettit, D.K.: Biodegradable polymers for protein and peptide drug delivery. Bioconjug. Chem. 6, 332–351 (1995)CrossRefGoogle Scholar
  24. 24.
    Roberts, J.C.: Paper Chemistry, 2nd edn. Blackie Academic & Professional, London (1996)Google Scholar
  25. 25.
    Signori, A.M.; Santos, K.O.; Eising, R.; Albuquerque, B.L.; Giacomelli, F.C.; Domingos, J.B.: Formation of catalytic silver nanoparticles supported on branched polyethyleneimine derivatives. Langmuir 26, 17772–17779 (2010)CrossRefGoogle Scholar
  26. 26.
    Deng, R.; Yue, Y.; Jin, F.; Chen, Y.; Kung, Hf; Lin, M.C.; Wu, C.: Revisit the complexation of PEI and DNA—how to make low cytotoxic and highly efficient PEI gene transfection non-viral vectors with a controllable chain length and structure. J. Control. Release 140, 40–46 (2009)CrossRefGoogle Scholar
  27. 27.
    Ismael, B.; Leandro, N.; Renato, E.; Josiel, D.; Vanderlei, M.; Edson, M.: Properties of aqueous solutions of hydrophobically modified polyethylene imines in the absence and presence of sodium dodecylsulfate. J. Colloid Interface Sci. 370, 94–101 (2012)CrossRefGoogle Scholar
  28. 28.
    Tian, W.C.; Ho, Y.H.; Chen, C.H.; Kuo, C.Y.: Sensing performance of precisely ordered \(\text{ TiO }_{2}\) nanowire gas sensors fabricated by electron-beam lithography. Sensors (Basel) 13, 865–874 (2013)CrossRefGoogle Scholar
  29. 29.
    Cristina, D.; Andrei, B.S.; Irina, T.; Vasile, P.; Victor, J.; Rose-Marie, L.; Johan, B.; Ioana, D.: Electrospun \(\text{ TiO }_{2}\) nanofibers decorated Ti substrate for biomedical application. Mater. Sci. Eng. C 45, 56–63 (2014)CrossRefGoogle Scholar
  30. 30.
    Duong, N.N.; Hyeonseok, Y.: Recent advances in nanostructured conducting polymers: from synthesis to practical applications. Polymers 8, 118–156 (2016)CrossRefGoogle Scholar
  31. 31.
    Rupali, J.; Bharat, M.: Thermal gravimetric analysis study of silicoaluminophosphate synthesized from non-aqueous media for solar energy storage material. Mater. Today 4, 774–778 (2017)CrossRefGoogle Scholar
  32. 32.
    Kashyout, A.B.; Soliman, H.; Shokry, H.; Abousehly, M.: Fabrication of ZnO and ZnO:Sb nanoparticles for gas sensor applications. J. Nanomater. Article ID 341841 (2010)Google Scholar
  33. 33.
    Sunil, M.; Biraja, D.; Stephen, C.; Abhay, P.: Mannosylated polyethyleneimine—hyaluronan nanohybrids for targeted gene delivery to macrophage-like cell lines. Bioconjug. Chem. 23, 1138–1148 (2012)CrossRefGoogle Scholar
  34. 34.
    Bożena, K.; Maciej, G.; Artur, O.; Janusz, P.; Agata, G.: Physicochemical characterization and dissolution studies of solid dispersions of clotrimazole with pluronic F127. Trop. J. Pharm. Res. 13, 1225–1232 (2014)CrossRefGoogle Scholar
  35. 35.
    Pawar, R.P.: Study of thermal decomposition and instrumental analysis of synthesised polyvinyl alcohol polymer. Ultra. Chem. 11, 1–6 (2015)Google Scholar
  36. 36.
    Osiris, W.G.; Manal, T.M.: Thermal and structural studies of poly(vinyl alcohol) and hydroxypropyl cellulose blends. Nat. Sci. 4, 57–67 (2012)Google Scholar
  37. 37.
    Japić, D.; Marinšek, M.; Crnjak, O.Z.: Effect of ZnO on the thermal degradation behavior of poly(Methyl Methacrylate) nanocomposites. Acta. Chim. Slov. 63, 535–543 (2016)Google Scholar
  38. 38.
    Minoru, M.; Trevor, J.S.; Jianjun, M.; Jennifer, E.G.; Zachary, H.S.; Udayanath, A.; Jonathan, S.D.; Robert, J.L.: Electrospun polyvinylpyrrolidone fibers with high concentrations of ferromagnetic and superparamagnetic nanoparticles. ACS Appl. Mater. Interfaces 3, 1958–1964 (2011)CrossRefGoogle Scholar
  39. 39.
    Yuasa, M.; Masaki, T.; Kida, T.; Shimanoe, K.; Yamazoe, N.: Nano-sized PdO loaded \(\text{ SnO }_{2}\) nanoparticles by reverse micelle method for highly sensitive CO gas sensor. Sens. Actuator B Chem. 136, 99–104 (2009)CrossRefGoogle Scholar
  40. 40.
    Jaehyun, M.; Jin-Ah, P.; Su-Jae, L.; Taehyoung, Z.; Il-Doo, K.: Pd-doped \(\text{ TiO }_{2}\) nanofiber networks for gas sensor applications. Sens. Actuator B Chem. 149, 301–305 (2010)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Polymer Materials Research Department, Advanced Technology and New Materials Research InstituteScientific Research and Technological Applications City (SRTA-City)New Borg El-Arab CityEgypt
  2. 2.Electronic Materials Research Department, Advanced Technology and New Materials Research InstituteScientific Research and technological applications (SRTA-City)New Borg El-Arab CityEgypt
  3. 3.Physics Department, Faculty of ScienceJouf UniversityAljoufSaudi Arabia
  4. 4.Fabrication Technology Research Department, Advanced Technology and New Materials Research InstituteScientific Research and Technological Applications City (SRTA-City)New Borg El-Arab CityEgypt
  5. 5.Chemical and Petrochemical Engineering DepartmentEgypt-Japan University for Science and TechnologyNew Borg El-Arab CityEgypt

Personalised recommendations