Arabian Journal for Science and Engineering

, Volume 44, Issue 5, pp 4703–4724

Development of Eight-Node Curved-Side Quadrilateral Membrane Element Using Chain Direct Integration Scheme (SCDI) in Area Coordinates (MHCQ8-DI)

• Guoxiang Zhang
• Min Wang
Research Article - Civil Engineering

Abstract

This paper proposes an integration scheme using successively direct integration and conventional numerical integration to solve the element stiffness matrix. First, construct the integral formula for the element stiffness matrix by conducting direct integration for global coordinate. Second, solve the element stiffness matrix by converting the integration formula of element stiffness matrix for global coordinate into one for local coordinate. In view of the sequence and dependencies of the mixed use of the two integration schemes, the scheme is named as Chained Direct Integration Scheme (SCDI for short). This scheme can be applied when the global coordinate cannot be directly integral because integral interval of global coordinate cannot be determined. To better illustrate the specific operation of the scheme, an eight-node curved-side quadrilateral membrane element (MHCQ8-DI for short) with general interpolation points is constructed. The new element has the advantages of anti-distortion, good convergence, and the excellent performance to fit curved boundaries. The solution process of stiffness matrix of MHCQ8-DI presents that the scheme can reduce the integration dimension and computational workload. The numerical results show that the simulation accuracy for the new scheme was not lower than one for merely using conventional numerical integration. Besides, the theoretical derivation is given to exclude zero energy mode.

Keywords

Chain direct integration scheme High accuracy Curved-side element Second-order completeness General interpolation points Zero energy mode

References

1. 1.
Taig, I.C.: Structural analysis by the matrix displacement method. In: English Electric Aviation Report, vol. S017 (1961)Google Scholar
2. 2.
Irons, B.M.: Engineering applications of numerical integration in stiffness methods. AIAA J. 4(11), 2035–2037 (1966)
3. 3.
Stricklin, J.A.; Ho, W.S.; Richardson, E.Q.; Haisler, W.E.: On isoparametric vs linear strain triangular elements. Int. J. Numer. Methods Eng. 11(11), 1041–1043 (1977)Google Scholar
4. 4.
Bäcklund, J.: On isoparametric elements. Int. J. Numer Methods Eng. 12(4), 731–732 (1978)Google Scholar
5. 5.
Gifford, L.N.: More on distorted isoparametric elements. Int. J. Numer. Methods Eng. 14(2), 290–291 (1979)Google Scholar
6. 6.
Lee, N.S.; Bathe, K.J.: Effects of element distortion on the performance of isoparametric elements. Int. J. Numer. Methods Eng. 36(20), 3553–3576 (1993)
7. 7.
Arnold, D.N.; Boffi, D.; Falk, R.S.: Approximation by quadrilateral finite elements. Math. Comput. 71(239), 909–922 (2002)
8. 8.
Kikuchi, F.; Okabe, M.; Fujio, H.: Modification of the 8-node serendipity element. Comput. Methods Appl. Mech. Eng. 179(1–2), 91–109 (1999)
9. 9.
Li, L.X.; Kunimatsu, S.; Han, X.P.; Xu, S.Q.: The analysis of interpolation precision of quadrilateral elements. Finite Elem. Anal. Des. 41(1), 91–108 (2004)Google Scholar
10. 10.
Rajendran, S.; Liew, K.M.: A novel unsymmetric 8-node plane element immune to mesh distortion under a quadratic displacement field. Int. J. Numer. Methods Eng. 58(11), 1713–1748 (2003)
11. 11.
Ooi, E.T.; Rajendran, S.; Yeo, J.H.: Remedies to rotational frame dependence and interpolation failure of US-QUAD8 element. Commun. Numer. Methods Eng. 24(11), 1203–1217 (2007)
12. 12.
Li, C.J.; Wang, R.H.: A new 8-node quadrilateral spline finite element. J. Comput. Appl. Math. 195(1–2), 54–65 (2006)
13. 13.
Wisniewski, K.; Turska, E.: Improved 4-node Hu-Washizu elements based on skew coordinates. Comput. Struct. 87(7), 407–424 (2009)Google Scholar
14. 14.
Rezaieepajand, M.; Yaghoobi, M.: A free of parasitic shear strain formulation for plane element. Res. Civ. Environ. Eng. 1(01), 01–27 (2013)Google Scholar
15. 15.
Rezaieepajand, M.; Yaghoobi, M.: An efficient formulation for linear and geometric non-linear membrane elements. Latin Am. J. Solids Struct. 11(6), 1012–1035 (2014)Google Scholar
16. 16.
Rezaieepajand, M.; Yaghoobi, M.: Two new quadrilateral elements based on strain states. Civ. Eng. Infrastruct. J. 48(1), 133–156 (2015)Google Scholar
17. 17.
Rezaieepajand, M.; Yaghoobi, M.: A hybrid stress plane element with strain field. Civ. Eng. Infrastruct. J. 50(2), 255–275 (2017)Google Scholar
18. 18.
Long, Y.; Li, J.; Long, Z.; Song, C.: Area co-ordinates used in quadrilateral elements. Commun. Numer. Methods Eng. 15(15), 533–545 (1999)
19. 19.
Chen, X.M.; Cen, S.; Fu, X.R.; Long, Y.Q.: A new quadrilateral area coordinate method (QACM-II) for developing quadrilateral finite element models. Int. J. Numer. Methods Eng. 73(13), 1911–1941 (2008)
20. 20.
Long, Z.F.; Cen, S.; Wang, L.; Fu, X.R.; Long, Y.Q.: The third form of the quadrilateral area coordinate method (QACM-III): theory, application, and scheme of composite coordinate interpolation. Finite Elem. Anal. Des. 46(10), 805–818 (2010)Google Scholar
21. 21.
Cen, S.; Chen, X.M.; Li, C.F.; Fu, X.R.: Quadrilateral membrane elements with analytical element stiffness matrices formulated by the new quadrilateral area coordinate method (QACM-II). Int. J. Numer. Methods Eng. 77(8), 1172–1200 (2010)
22. 22.
Rajendran, S.; Liew, K.M.: Completeness requirements of shape functions for higher order elements. Struct. Eng. Mech. 10(2), 93–110 (2000)Google Scholar
23. 23.
Chen, X.M.; Long, Y.Q.: An eight plane element using quadrilateral area coordinate. Engineering Mechanics (2003) (in Chinese)Google Scholar
24. 24.
Macneal, R.H.; Harder, R.L.: A proposed standard set of problems to test finite element accuracy. Finite Elem. Anal. Des. 1(1), 3–20 (1985)Google Scholar
25. 25.
Timoshenko, S.P.; Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970)
26. 26.
Wu, C.C.: Dual zero energy modes in mixed/hybrid elements—definition, analysis and control. Comput. Methods Appl. Mech. Eng. 81(1), 39–56 (1990)
27. 27.
Pian, T.H.H.; Wu, C.C.: Hybrid and Incompatible Finite Element Methods. Chapman & Hall/CRC,Taylor & Francis Group, Boca Raton (2006)
28. 28.
Long, Z.F.; Cen, S.: Generalized conforming element theory and quadrilateral area coordinate method. China University of Mining and Technology, XuZhou (2000) (in Chinese)Google Scholar
29. 29.
Wang, L.; Long, Z.F.; Long, Y.Q.: Eight-node quadrilateral membrane element formulated by mixed use of the three types of the quadrilateral area coordinate method. Eng. Mech. 27(2), 1–6 (2010). (in Chinese)Google Scholar
30. 30.
Cen, S.; Fu, X.R.; Zhou, M.J.: 8 and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes. Comput. Methods Appl. Mech. Eng. 200(29), 2321–2336 (2011)
31. 31.
Wilson, E.L.; Taylor, R.L.; Doherty, W.P.; Ghaboussi, J.: Incompatible displacement models. In: Numerical and Computer Methods in Structural Mechanics. Academic Press, New York, USA, pp. 43–57 (1973)Google Scholar
32. 32.
Taylor, R.L.; Beresford, P.J.; Wilson, E.L.: A non-conforming element for stress analysis. Int. J. Numer. Methods Eng. 10(6), 1211–1219 (1976)
33. 33.
Fu, X.R.; Cen, S.; Li, C.F.; Chen, X.M.: Analytical trial function method for development of new 8-node plane element based on variational principle containing Airy stress function. Eng. Comput. 27(4), 442–463 (2010)
34. 34.
Ai-Kah, S.; Long, Y.; Song, C.: Development of eight-node quadrilateral membrane elements using the area coordinates method. Comput. Mech. 25(4), 376–384 (2000)
35. 35.
Cen, S.; Chen, X.M.; Fu, X.R.: Quadrilateral membrane element family formulated by the quadrilateral area coordinate method. Comput. Methods Appl. Mech. Eng. 196(41), 4337–4353 (2007)
36. 36.
Cen, S.; Long, Z.F.; Zhang, C.S.: Two quadrilateral membrane element eight nodes using the area coordinate. Eng. Mech. (Supplement), 237–241 (1998) (in Chinese)Google Scholar