Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6285–6295 | Cite as

The Effect of La on the Oxidation and Corrosion Resistance of \(\hbox {Cu}_{52}\hbox {Ni}_{30}\hbox {Fe}_{18}\) Alloy Inert Anode for Aluminum Electrolysis

  • Liu YingEmail author
  • Zhang Yong’anEmail author
  • Wang Wei
  • Li Dongsheng
  • Ma Junyi
  • Du Juan
Research Article - Chemical Engineering


The effect of La on the high-temperature oxidation and corrosion performance of ternary \(\hbox {Cu}_{52}\hbox {Ni}_{30}\hbox {Fe}_{18}\) alloy inert anode for aluminum electrolysis in low-temperature KF–NaF–\(\hbox {AlF}_{3}\) electrolyte was studied. The results indicate that the oxidation kinetics of (\(\hbox {Cu}_{52}\hbox {Ni}_{30}\hbox {Fe}_{18})_{1{-}x}\hbox {La}_{x}\) (x = 0, 0.5, 1, 2 wt%) alloys at \(850\,^{\circ }\hbox {C}\) under 1 atm oxygen atmosphere follow the parabolic law. The oxidation scales are stratified state, which contains the Cu oxide as the external layer. While the internal layer of the oxidation products are the mixture of Fe oxide, Ni oxide and nickel ferrite. The Cu outward diffusion oxidation is the dominant factor for the \(\hbox {Cu}_{52}\hbox {Ni}_{30}\hbox {Fe}_{18}\) alloy during high temperature oxidation. After adding La to the \(\hbox {Cu}_{52}\hbox {Ni}_{30}\hbox {Fe}_{18}\) alloy, the oxidation mechanism has become the combined action with outward diffusion of Cu and internal diffusion of O to form the Ni/Fe oxide underneath the outmost CuO layer. The corrosion resistance of \(\hbox {Cu}_{52}\hbox {Ni}_{30}\hbox {Fe}_{18}\) alloy anode during the aluminum electrolysis is further improved by adding 0.5 wt% La. Compared with \(\hbox {Cu}_{52}\hbox {Ni}_{30}\hbox {Fe}_{18 }\)alloy, the corrosion rate of the \(\hbox {Cu}_{52}\hbox {Ni}_{30}\hbox {Fe}_{18 }\)alloy with 0.5 wt% addition of La has reduced from 1.9 to 1.8 cm/a.


Aluminum electrolysis Inert anode Cu–Ni–Fe alloy Rare earth La High-temperature oxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the Major Science and Technology Programs of CHALCO(ZB2013CBBCe1). The authors thank the Zhengzhou Non-ferrous Metals Research Institute Co. Ltd of CHALCO for supporting this work.


  1. 1.
    Inert Anode technologies Report: Report of the American Society of Mechanical Engineers. Technical working group of inert anode technologies, Washington (1999)Google Scholar
  2. 2.
    Pawlek, R.P.: Inert anodes: an update. Light Met. 49, 1126–1133 (2002)Google Scholar
  3. 3.
    Welch, B.J.: INERT ANODES-The status of the material science, the opportuites they present and the challenges that need resolving before commercial implementation. Light Met. 38, 971–978 (2009)Google Scholar
  4. 4.
    Yan, H.; Yang, J.; Li, W.; Chen, S.: Alumina solubility in KF-NaF-\(\text{ AlF }_{3}\)-based low-temperature electrolyte. Metall. Mater. Trans. B 42, 1065–1070 (2011)CrossRefGoogle Scholar
  5. 5.
    Haugsrud, R.: On the influence of non-protective CuO on high-temperature oxidation of Cu-rich Cu–Ni based alloys. Oxid. Met. 52(5–6), 427–445 (1999)CrossRefGoogle Scholar
  6. 6.
    Haugsrud, R.; Kofstad, P.: On the high temperature oxidation of Cu-rich Cu–Ni alloys. Oxid. Met. 50(3–4), 189–213 (1998)CrossRefGoogle Scholar
  7. 7.
    Beck, T.R.; Brooks, R.J.: Non-consumable anode and lining for aluminum electrolytic reduction cell. US Patent: 5284562. (1994)Google Scholar
  8. 8.
    Goupil, G.; Bonnefont, G.; Idrissi, H.; Guay, D.; Roué, L.: Consolidation of mechanically alloyed Cu–Ni–Fe material by spark plasma sintering and evaluation as inert anode for aluminum electrolysis. J. Alloys Comp. 580, 256–261 (2013)CrossRefGoogle Scholar
  9. 9.
    Helle, S.; Pedron, M.; Assouli, B.; Davis, B.; Guay, D.; Roué, L.: Structure and high-temperature oxidation behaviour of Cu–Ni–Fe alloys prepared by high-energy ball milling for application as inert anodes in aluminum electrolysis. Corros. Sci. 52, 3348–3355 (2010)CrossRefGoogle Scholar
  10. 10.
    Gallino, I.; Kassner, M.E.; Busch, R.: Oxidation and corrosion of highly alloyed Cu–Fe–Ni as inert anode material for aluminum electrowinning in as-cast and homogenized conditions. Corros. Sci. 63, 293–303 (2012)CrossRefGoogle Scholar
  11. 11.
    Gavrilovaa, E.; Goupila, G.; Davisb, B.; Guaya, D.; Roué, L.: On the key role of Cu on the oxidation behavior of Cu–Ni–Fe based anodes for Al electrolysis. Corros. Sci. 101, 105–113 (2015)CrossRefGoogle Scholar
  12. 12.
    Beck, T.R.: A non-consumable metal anode for production of aluminum with low-temperature fluoride melts. In: Tomsett, A., Johnson, J. (eds.) Essential Readings in Light Metals, pp. 1104–1109. Springer, Cham (2016)CrossRefGoogle Scholar
  13. 13.
    Beck, T.R.; MacRae, C.M.; Wilson, N.C.: Metal anode performance in low temperature electrolytes for aluminum production. Metall. Mater. Trans. B 42, 807–813 (2011)CrossRefGoogle Scholar
  14. 14.
    Kazuhide, I.; Masaaki, K.; Shin, I.: Effect of rare-earth elements on high temperature oxidation resistance of Fe–20Cr–5Al alloy foils. Mater. Trans. JIM 38(9), 787–792 (1997)CrossRefGoogle Scholar
  15. 15.
    Prescott, R.; Graham, M.J.: Formation of aluminum oxide scales on high-temperature alloys. Oxid. Met. 38(3–4), 233–254 (1992)CrossRefGoogle Scholar
  16. 16.
    Cmanowski, J.C.; Pelczarska, A.J.; Szczygieł, I.; Szczygie, B.: Influence of ceria and yttria on the protective properties of \(\text{ SiO }_{2}\)-\(\text{ Al }_{2}\text{ O }_{3}\) coatings deposited by sol-gel method on FeCrAl alloy. J. Therm. Anal. Calorim. 126(2), 1–10 (2016)Google Scholar
  17. 17.
    Weiping, P.; Ying, L.; Jie, G.; Ruilong, Z.; Jianhong, Y.; Wangxing, L.: Effect of La on the electrolysis performance of 46Cu-25Ni-19Fe-10Al metal anode. In: Grandfield, J. (ed.) Light Metals 2014, pp. 1301–1304. Springer, Cham (2014)CrossRefGoogle Scholar
  18. 18.
    Zhang, X.H.; Zhang, C.; Zhang, Y.D.; Salam, S.; Wang, H.F.; Yang, Z.G.: Effect of yttrium and aluminum additions on isothermal oxidation behavior of Tribaloy T-700 alloys. Corros. Sci. 88, 405–415 (2014)CrossRefGoogle Scholar
  19. 19.
    Yanfang, Z.; Shusuo, L.; Yafang, H.: Effect of yttrium on oxidation behavior of \(\text{ Ni }_{3}\)Al-based single crystal alloys. Rare Met. 30, 538–543 (2011)CrossRefGoogle Scholar
  20. 20.
    Birks, N.; Meier, G.H.; Pettit, F.S.: Introduction to the High Temperature Oxidation of Metals, 2nd edn, pp. 75–80. Cambridge University Press, Cambridge (2009)Google Scholar
  21. 21.
    ASM Metals HandBook, Volume 03: Alloy Phase Diagrams, 753Google Scholar
  22. 22.
    Haugsrud, R.; Norby, T.; Kofstad, P.: High-temperature oxidation of Cu–30wt.% Ni–15wt.% Fe. Corros. Sci. 43, 283–299 (2001)CrossRefGoogle Scholar
  23. 23.
    Narula, M.L.; Tare, V.B.; Worrell, W.L.: Diffusivity and solubility of oxygen in solid copper using potentiostatic and potentiometric techniques. Metall. Trans. B 14(4), 673–677 (1983)CrossRefGoogle Scholar
  24. 24.
    Park, J.-W.; Altstetter, C.J.: The diffusion and solubility of oxygen in solid nickel. Metall. Trans. A 18(1), 43–50 (1987)CrossRefGoogle Scholar
  25. 25.
    Chapman, V.; Welch, B.J.; Skyllas-Kazacos, M.: High temperature oxidation behaviour of Ni–Fe–Co anodes for aluminum electrolysis. Corros. Sci. 53, 2815–2825 (2011)CrossRefGoogle Scholar
  26. 26.
    Solheim, A.: Current efficiency in aluminium reduction cells: theories, models, concepts, and speculations. In: Grandfield, J. (ed.) Light Metals 2014, pp. 753–758. Springer, Cham (2014)Google Scholar
  27. 27.
    Robert, E.; Olsen, J.E.; Danek, V.; Tixhon, E.; Østvold, T.; Gilbert, B.: Structure and thermodynamics of alkali fluoride-aluminum fluoride-alumina melts. Vaporpressure, solubility, and raman spectroscopic studies. J. Phys. Chem. B 101, 9447–9457 (1997)CrossRefGoogle Scholar
  28. 28.
    Khramov, A.P.; Kovrov, V.A.; Zaikov, Y.P.; Chumarev, V.M.: Anodic behaviour of the \(\text{ Cu }_{82}\text{ Al }_{8}\text{ Ni }_{5}\text{ Fe }_{5}\) alloy in low-temperature aluminum electrolysis. Corros. Sci. 70, 194–202 (2013)CrossRefGoogle Scholar
  29. 29.
    Haynes, W.M.: CRC-Handbook of Chemistry and Physics, pp. 12–214. CRC Press, Boca Raton (2016)Google Scholar
  30. 30.
    Feng, L.C.; Shao, W.Z.; Zhen, L.; Xie, N.: \(\text{ Cu }_{2}\)O/Cu cermet as a candidate inert anode for Al production. Int. J. Appl. Ceram. Technol. 4(5), 453–462 (2007)CrossRefGoogle Scholar
  31. 31.
    Cassayre, L.; Chamelot, P.; Arurault, L.; Taxil, P.: Anodic dissolution of metals in oxide-free cryolite melts. J. Appl. Electrochem. 35, 999–1004 (2005)CrossRefGoogle Scholar
  32. 32.
    Binnewies, M.; Milke, E.: Thermochemical Data of Elements and Compounds, 2nd edn, p. 437. Wiley-VCH, Weinheim (1999)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Nonferrous Metals and ProcessesGeneral Research Institute for Nonferrous MetalsBeijingChina
  2. 2.Zhengzhou Non-ferrous Metals Research Institute Co. Ltd of CHALCOZhengzhouChina
  3. 3.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina

Personalised recommendations