Advertisement

Multi-objective Optimization of Wire Electrical Discharge Machining Process Parameters for Al5083/7%\({\hbox {B}}_{4}{\hbox {C}}\) Composite Using Metaheuristic Techniques

  • Malik Shadab
  • Ram Singh
  • R. N. Rai
Research Article - Physics
  • 18 Downloads

Abstract

Metal matrix composites have become a vital concern for the modern manufacturing companies due to some of their special properties. The presence of reinforcement makes them difficult in machining operations to achieve industrial requirements. Therefore, it is necessary to optimize the machining process parameters to improve output performance in terms of product quality. The overall performance of the wire electrical discharge machining (WEDM) process is influenced by various parameters, such as pulse-on time, pulse-off time, induced current, and wire-feed. WEDM is one of the non-traditional machining processes. It machines only electrically conducting materials and machines the surfaces by the thermo-electrical process. During machining of composites, material removal rate, cutting speed, and surface roughness have been considered for this research. The relation between the process parameters and the output responses is developed by using linear regression analysis through Minitab-17. The experiments conducted are dependent on Taguchi \({\hbox {L}}_{25}\) orthogonal array. The optimized sets of process parameters are obtained by using teaching and learning-based optimization.

Keywords

Wire electrical discharge machining (WEDM) Cutting speed (Cs) MRR Surface roughness Teaching and learning-based optimization (TLBO) algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rao, R.V.; Pawar, P.J.: Modelling and optimization of process parameters of wire electrical discharge machining. J. Eng. Manuf. 223, 1431–1440 (2009)CrossRefGoogle Scholar
  2. 2.
    Kuppan, P.; Rajadurai, A.; Narayanan, S.: Influence of EDM process parameters in deep hole drilling of Inconel 718. Int. J. Adv. Manuf. Technol. 38, 74–84 (2008)CrossRefGoogle Scholar
  3. 3.
    Rajesha, S.; Sharma, A.K.; Kumar, P.: On electro-discharge machining of Inconel 718 with hollow tool. J. Mater. Eng. Perform. 21, 882–891 (2012)Google Scholar
  4. 4.
    Ramakrishnan, R.; Karunamoorthy, L.: Modelling and multi-response optimization of Inconel 718 on machining of CNC WEDM process. J. Mater. Process. Technol. 207, 343–349 (2008)CrossRefGoogle Scholar
  5. 5.
    Dey, A.; Debnath, S.; Pandey, K.M.: Optimization of electrical discharge machining process parameters for Al6061/cenosphere composite using grey-based hybrid approach. Trans. Nonferr. Met. Soc. China 27, 998–1010 (2017)CrossRefGoogle Scholar
  6. 6.
    Dhinesh, K.; Sivakumar, M.; Sivakumar, K.; Kumar, M.: Optimization of wire EDM process parameters of Al 6061/Al2O3/3% red mud MMC. IJETCSE 22, 58–63 (2016)Google Scholar
  7. 7.
    Rao, R.V.; Kalyankar, V.D.: Parameter optimization of modern machining processes using teaching-learning-based optimization algorithm. Eng. Appl. Artif. Intell. 26, 524–553 (2013)CrossRefGoogle Scholar
  8. 8.
    Sarkar, S.; Mitra, S.; Bhattacharyya, B.: Parametric analysis and optimization of wire electrical discharge machining of G-titanium aluminide alloy. J. Mater. Process. Technol. 159, 286–294 (2005)CrossRefGoogle Scholar
  9. 9.
    Shandilya, P.; Jain, P.K.: Genetic algorithm based optimization during wire electric discharge machining of metal matrix composite. In: Annals of DAAAM for 2012 & Proceedings of the 23rd International DAAAM Symposium, vol. 23, pp. 401–404 (2012)Google Scholar
  10. 10.
    Prabhu, S.; Vinayagam, B.K.: AFM nano analysis of Inconel 825 with single-wall carbon nanotube in die sinking EDM process using Taguchi analysis. Arab. J. Sci. Eng. 38, 1599–1613 (2013)CrossRefGoogle Scholar
  11. 11.
    Assarzadeh, S.; Ghoreishi, M.: Statistical modeling and optimization of process parameters in electro-discharge machining of cobalt-bonded tungsten carbide composite (WC/6%Co). Procedia CIRP 6, 463–468 (2013)CrossRefGoogle Scholar
  12. 12.
    Gangadharudu, T.; Sahoo, D.K.; Gangopadhyay, S.; Biswas, C.K.: Modeling and multi-objective optimization of powder mixed electric discharge machining process of aluminum/alumina metal matrix composite. JESTECH 18, 369–373 (2015)Google Scholar
  13. 13.
    Kanlayasiri, K.; Boonmung, S.: Effects of wire-EDM machining variables on surface roughness of newly developed DC 53 die steel: Design of experiments and regression model. J. Mater. Process. Technol. 192–193, 459–464 (2007)CrossRefGoogle Scholar
  14. 14.
    Tosun, N.; Cogun, C.; Inan, A.: The effect of cutting parameters on workpiece surface roughness in wire EDM. Mach. Sci. Technol. 7, 209–219 (2003)CrossRefGoogle Scholar
  15. 15.
    Huang, J.T.; Liao, Y.S.: Optimization of machining parameters of Wire-EDM based on grey relational and statistical analyses. Int. J. Prod. Res. 41, 1707–1720 (2003)CrossRefzbMATHGoogle Scholar
  16. 16.
    Tarng, Y.S.; Ma, S.C.; Chung, L.K.: Determination of optimal cutting parameters in wire electrical discharge machining. Int. J. Mach. Tools Manuf. 35, 1693–1700 (1995)CrossRefGoogle Scholar
  17. 17.
    Karaboga, D.; Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39, 459–471 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Karaboga, D.; Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8, 687–697 (2008)CrossRefGoogle Scholar
  19. 19.
    Ferraris, E.; Castiglioni, V.; Ceyssens, F.; Annoni, M.; Lauwers, B.; Reynaerts, D.: EDM Drilling of ultra-high aspect ratio micro holes with insulated tools. CIRP Ann. Manuf. Technol. 62, 191–194 (2013)CrossRefGoogle Scholar
  20. 20.
    Ross, P.J.: Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design. McGrew-Hill, New York (1996)Google Scholar
  21. 21.
    Konda, R.; Rajurkar, K.P.; Bishu, R.R.; Guha, A.; Parson, M.: Design of experiments to study and optimize process performance. Int. J. Qual. Reliab. Manag. 16, 56–71 (1999)CrossRefGoogle Scholar
  22. 22.
    Montgomery, D.C.: Design and Analysis of Experiments. Wiley, New York (1997)zbMATHGoogle Scholar
  23. 23.
    Rao, R.V.; Savsani, V.J.; Vakharia, D.P.: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Design 43, 303–315 (2011)CrossRefGoogle Scholar
  24. 24.
    Rao, R.V.; Savsani, V.J.; Vakharia, D.P.: Teaching-learning-based optimization: an optimization method for continuous non-linear large-scale problem. Inf. Sci. 183, 1–15 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Rao, R.V.; Patel, V.: An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. IJIEC 3, 535–560 (2012)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Production EngineeringNational Institute of TechnologyAgartalaIndia

Personalised recommendations