Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 1, pp 217–226 | Cite as

Modified Lanthanum–Zeolite for Sensitive Electrochemical Detection of Heavy Metal Ions

  • A. Ismail
  • A. Kawde
  • O. Muraza
  • M. A. Sanhoob
  • Md. Abdul Aziz
  • A. R. Al-BetarEmail author
Research Article - Chemistry
  • 28 Downloads

Abstract

Lanthanum-zeolite carbon paste electrode was synthesized and investigated as an alternative electrode for electrochemical detection of Pb(II) and Cd(II) ions. Prior to the analysis, mordenite zeolite with \(\hbox {SiO}_{2}/\hbox {Al}_{2}\hbox {O}_{3}\) ratio of 15 was synthesized and characterized by XRD, SEM, EDX and XPS. Composite electrode was fabricated by mixing carbon graphite, lanthanum-impregnated zeolite and paraffin oil until a uniform paste was formed. Preliminary studies showed that the electrode with 2 wt% lanthanum impregnation (2 wt% La-MOR/CPE) gave a better response toward the detection of Pb(II) ion. Accumulation of Pb(II) ion was achieved at a potential of − 1.2 V (vs. Ag/AgCl) for 120 s followed by anodic stripping scan in the range of − 1.6 to 0 V. Analytical figures of merit for the 2 wt% La-MOR/CPE are comparable with other reported electrodes. The detection limit (\(S/N = 3\)) for single detection of Pb(II) was 0.23 ppb. On the other hand for simultaneous detection of Pb(II) and Cd(II) ions, detection limits were found to be 0.24 and 0.12 ppb, respectively. The composite electrode demonstrates the potential to be used in the quantification of heavy metals due to its simplicity, low cost of fabrication, lack of toxicity, and speed of analysis

Keywords

Lanthanum–zeolite Square wave voltammograms Lead (II) Cadmium (II) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum and Minerals for funding this work through Project No. JF141005. The facilities provided by the Chemistry Department and the Center of Research Excellence in Nanotechnology at King Fahd University of Petroleum and Minerals are highly appreciated.

References

  1. 1.
    Fen, Y.W.; Yunus, W.M.M.; Talib, Z.A.: Analysis of Pb(II) ion sensing by crosslinked chitosan thin film using surface plasmon resonance spectroscopy. Opt. Int. J. Light Electron Opt. 124(2), 126–133 (2013).  https://doi.org/10.1016/j.ijleo.2011.11.035 Google Scholar
  2. 2.
    Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J.: Heavy Metals Toxicity and the Environment. EXS 101, 133–164 (2012).  https://doi.org/10.1007/978-3-7643-8340-4_6 Google Scholar
  3. 3.
    Waalkes, M.P.: Cadmium carcinogenesis in review. J. Inorg. Biochem. 79(1), 241–244 (2000).  https://doi.org/10.1016/S0162-0134(00)00009-X Google Scholar
  4. 4.
    Shams, E.; Torabi, R.: Determination of nanomolar concentrations of cadmium by anodic-stripping voltammetry at a carbon paste electrode modified with zirconium phosphated amorphous silica. Sens. Actuators B: Chem. 117(1), 86–92 (2006).  https://doi.org/10.1016/j.snb.2005.10.049 Google Scholar
  5. 5.
    Prabakar, S.J.R.; Sakthivel, C.; Narayanan, S.S.: Hg(II) immobilized MWCNT graphite electrode for the anodic stripping voltammetric determination of lead and cadmium. Talanta 85(1), 290–297 (2011).  https://doi.org/10.1016/j.talanta.2011.03.058 Google Scholar
  6. 6.
    Jiang, X.; Chen, Y.; Zheng, C.; Hou, X.: Electrothermal vaporization for universal liquid sample introduction to dielectric barrier discharge microplasma for portable atomic emission spectrometry. Anal. Chem. 86(11), 5220–5224 (2014).  https://doi.org/10.1021/ac500637p Google Scholar
  7. 7.
    Goyal, R.N.; Gupta, V.K.; Chatterjee, S.: Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode. Sens. Actuators B: Chem. 149(1), 252–258 (2010).  https://doi.org/10.1016/j.snb.2010.05.019 Google Scholar
  8. 8.
    Salmanipour, A.; Taher, M.A.: An electrochemical sensor for stripping analysis of Pb(II) based on multiwalled carbon nanotube functionalized with 5-Br-PADAP. J. Solid State Electrochem. 15(11), 2695–2702 (2011).  https://doi.org/10.1007/s10008-010-1197-3 Google Scholar
  9. 9.
    Raghu, G.K.; Sampath, S.; Pandurangappa, M.: Chemically functionalized glassy carbon spheres: a new covalent bulk modified composite electrode for the simultaneous determination of lead and cadmium. J. Solid State Electrochem. 16(5), 1953–1963 (2012).  https://doi.org/10.1007/s10008-011-1595-1 Google Scholar
  10. 10.
    Simionca, I.-M.; Arvinte, A.; Ardeleanu, R.; Pinteala, M.: Siloxane-crown ether polyamide based electrode for electrochemical determination of lead(II) in aqueous solution. Electroanalysis 24(10), 1995–2004 (2012).  https://doi.org/10.1002/elan.201200190 Google Scholar
  11. 11.
    Intarakamhang, S.; Schuhmann, W.; Schulte, A.: Robotic heavy metal anodic stripping voltammetry: ease and efficacy for trace lead and cadmium electroanalysis. J. Solid State Electrochem. 17(6), 1535–1542 (2013).  https://doi.org/10.1007/s10008-013-2018-2 Google Scholar
  12. 12.
    Pinto, L.; Lemos, S.G.: Comparison of different PLS algorithms for simultaneous determination of Cd(II), Cu(II), Pb(II), and Zn(II) by anodic stripping voltammetry at bismuth film electrode. Electroanalysis 26(2), 299–305 (2014).  https://doi.org/10.1002/elan.201300500 Google Scholar
  13. 13.
    Adarakatti, P.S.; Malingappa, P.: Amino-calixarene-modified graphitic carbon as a novel electrochemical interface for simultaneous measurement of lead and cadmium ions at picomolar level. J. Solid State Electrochem. 20(12), 3349–3358 (2016).  https://doi.org/10.1007/s10008-016-3306-4 Google Scholar
  14. 14.
    Ganjali, M.R.; Asgari, M.; Faridbod, F.; Norouzi, P.; Badiei, A.; Gholami, J.: Thiomorpholine-functionalized nanoporous mesopore as a sensing material for Cd2+ carbon paste electrode. J. Solid State Electrochem. 14(8), 1359–1366 (2010).  https://doi.org/10.1007/s10008-009-0937-8 Google Scholar
  15. 15.
    Morante-Zarcero, S.; Pérez-Quintanilla, D.; Sierra, I.: A disposable electrochemical sensor based on bifunctional periodic mesoporous organosilica for the determination of lead in drinking waters. J. Solid State Electrochem. 19(7), 2117–2127 (2015).  https://doi.org/10.1007/s10008-015-2889-5 Google Scholar
  16. 16.
    Cundy, C.S.; Cox, P.A.: The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater. 82(1), 1–78 (2005).  https://doi.org/10.1016/j.micromeso.2005.02.016 Google Scholar
  17. 17.
    Aly, H.M.; Moustafa, M.E.; Abdelrahman, E.A.: Synthesis of mordenite zeolite in absence of organic template. Adv. Powder Technol. 23(6), 757–760 (2012).  https://doi.org/10.1016/j.apt.2011.10.003 Google Scholar
  18. 18.
    Gu, J.; Wu, Y.; Jin, Y.; Wang, J.: Hydrothermal incorporation of Ce(La) ions into the framework of ZSM-5 by a multiple pH-adjusting co-hydrolysis. J. Porous Mater. 20(1), 7–13 (2013).  https://doi.org/10.1007/s10934-012-9569-y Google Scholar
  19. 19.
    Li, Y.-J.; Liu, C.-Y.: Silver-exchanged zeolite Y-modified electrodes: size selectivity for anions. J. Electroanal. Chem. 517(1), 117–120 (2001).  https://doi.org/10.1016/S0022-0728(01)00678-7 Google Scholar
  20. 20.
    Kaur, B.; Anu Prathap, M.U.; Srivastava, R.: Synthesis of Transition-Metal Exchanged Nanocrystalline ZSM-5 and Their Application in Electrochemical Oxidation of Glucose and Methanol. ChemPlusChem 77(12), 1119–1127 (2012).  https://doi.org/10.1002/cplu.201200236 Google Scholar
  21. 21.
    Guzmán-Vargas, A.; Oliver-Tolentino, M.A.; Lima, E.; Flores-Moreno, J.: Efficient electrocatalytic reduction of nitrite species on zeolite modified electrode with Cu-ZSM-5. Electrochim. Acta 108, 583–590 (2013).  https://doi.org/10.1016/j.electacta.2013.07.030 Google Scholar
  22. 22.
    Ojani, R.; Raoof, J.-B.; Fathi, S.; Alami-Valikchali, S.: Electrochemical behavior of Ni(II) incorporated in zeolite Y-modified carbon electrode: application for electrocatalytic oxidation of methanol in alkaline solution. J. Solid State Electrochem. 15(9), 1935–1941 (2011).  https://doi.org/10.1007/s10008-010-1200-z Google Scholar
  23. 23.
    Kaur, B.; Srivastava, R.: Simultaneous electrochemical determination of nanomolar concentrations of aminophenol isomers using nanocrystalline zirconosilicate modified carbon paste electrode. Electrochim. Acta 141, 61–71 (2014).  https://doi.org/10.1016/j.electacta.2014.07.049 Google Scholar
  24. 24.
    Naikoo, R.A.; Bhat, S.U.; Mir, M.A.; Tomar, R.: Composites of various cation exchanged forms of mesoporous zeolite a with polypyrrole-thermal, spectroscopic and gas sensing studies. Microporous Mesoporous Mater. 243, 229–238 (2017).  https://doi.org/10.1016/j.micromeso.2017.02.027 Google Scholar
  25. 25.
    Yu, K.; He, N.; Kumar, N.; Wang, N.; Bobacka, J.; Ivaska, A.: Electrosynthesized polypyrrole/zeolite composites as solid contact in potassium ion-selective electrode. Electrochim. Acta 228, 66–75 (2017).  https://doi.org/10.1016/j.electacta.2017.01.009 Google Scholar
  26. 26.
    Abdullah, N.H.; Shameli, K.; Etesami, M.; Chan Abdullah, E.; Abdullah, L.C.: Facile and green preparation of magnetite/zeolite nanocomposites for energy application in a single-step procedure. J. Alloys Compd. 719, 218–226 (2017).  https://doi.org/10.1016/j.jallcom.2017.05.028 Google Scholar
  27. 27.
    Alcantara, G.P.; Ribeiro, L.E.B.; Alves, A.F.; Andrade, C.M.G.; Fruett, F.: Humidity sensor based on zeolite for application under environmental conditions. Microporous Mesoporous Mater. 247, 38–45 (2017).  https://doi.org/10.1016/j.micromeso.2017.03.042 Google Scholar
  28. 28.
    Ramezani, H.; Azizi, S.N.; Hosseini, S.R.: NaY zeolite as a platform for preparation of Ag nanoparticles arrays in order to construction of \(\text{ H }_2\text{ O }_2\) sensor. Sens. Actuators B: Chem. 248, 571–579 (2017).  https://doi.org/10.1016/j.snb.2017.04.005 Google Scholar
  29. 29.
    Pourbeyram, S.; Moosavifar, M.; Ashtari, L.: Ultra-sensitive determination of insulin on pencil graphite electrode modified by cerium salen encapsulated zeolite (CS@Z-PGE). Microporous Mesoporous Mater. 242, 25–33 (2017).  https://doi.org/10.1016/j.micromeso.2017.01.009 Google Scholar
  30. 30.
    Yao, J.; Yao, Y.: Zeolite supported palladium nanoparticle characterization for fuel cell application. Int. J. Hydrog. Energy 42(29), 18560–18567 (2017).  https://doi.org/10.1016/j.ijhydene.2017.04.182 Google Scholar
  31. 31.
    Kawde, A.; Ismail, A.; Al-Betar, A.R.; Muraza, O.: Novel Ce-incorporated zeolite modified-carbon paste electrode for simultaneous trace electroanalysis of lead and cadmium. Microporous Mesoporous Mater. 243, 1–8 (2017).  https://doi.org/10.1016/j.micromeso.2017.02.008 Google Scholar
  32. 32.
    Ismail, A.; Kawde, A.; Muraza, O.; Sanhoob, M.A.; Al-Betar, A.R.: Lanthanum-impregnated zeolite modified carbon paste electrode for determination of Cadmium (II). Microporous Mesoporous Mater. 225, 164–173 (2016).  https://doi.org/10.1016/j.micromeso.2015.12.023 Google Scholar
  33. 33.
    Lu, B.; Tsuda, T.; Oumi, Y.; Itabashi, K.; Sano, T.: Direct synthesis of high-silica mordenite using seed crystals. Microporous Mesoporous Mater. 76(1), 1–7 (2004).  https://doi.org/10.1016/j.micromeso.2004.07.008 Google Scholar
  34. 34.
    Fernandes, L.D.; Monteiro, J.L.F.; Sousa-Aguiar, E.F.; Martinez, A.; Corma, A.: Ethylbenzene hydroisomerization over bifunctional zeolite based catalysts: the influence of framework and extraframework composition and zeolite structure. J. Catal. 177(2), 363–377 (1998).  https://doi.org/10.1006/jcat.1998.2111 Google Scholar
  35. 35.
    Mohamed, M.M.; Salama, T.M.; Othman, I.; Ellah, I.A.: Synthesis of high silica mordenite nanocrystals using o-phenylenediamine template. Microporous Mesoporous Mater. 84(1), 84–96 (2005).  https://doi.org/10.1016/j.micromeso.2005.05.017 Google Scholar
  36. 36.
    Edwards, A.J.: H.P. Klug and L.E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials. Anal. Chim. Acta 77, 349 (1975).  https://doi.org/10.1016/S0003-2670(01)95199-2 Google Scholar
  37. 37.
    Tsai, M.-H.; Wang, H.-Y.; Lu, H.-T.; Tseng, I.H.; Lu, H.-H.; Huang, S.-L.; Yeh, J.-M.: Properties of \(\text{ polyimide }/\text{ Al }_2\text{ O }_3\) and \(\text{ Si }_3\text{ N }_4\) deposited thin films. Thin Solid Films 519(15), 4969–4973 (2011).  https://doi.org/10.1016/j.tsf.2011.01.063 Google Scholar
  38. 38.
    He, X.; Yang, H.: A novel strategy to the synthesis of \(\text{ Na }_3\text{ YSi }_2\text{ O }_7\) from natural palygorskite. Appl. Clay Sci. 101, 339–344 (2014).  https://doi.org/10.1016/j.clay.2014.08.025 Google Scholar
  39. 39.
    Bandgar, D.K.; Navale, S.T.; Naushad, M.; Mane, R.S.; Stadler, F.J.; Patil, V.B.: Ultra-sensitive polyaniline-iron oxide nanocomposite room temperature flexible ammonia sensor. RSC Adv. 5(84), 68964–68971 (2015).  https://doi.org/10.1039/C5RA11512D Google Scholar
  40. 40.
    Fida, H.; Zhang, G.; Guo, S.; Naeem, A.: Heterogeneous Fenton degradation of organic dyes in batch and fixed bed using La-Fe montmorillonite as catalyst. Journal of Colloid and Interface Science 490, 859–868 (2017).  https://doi.org/10.1016/j.jcis.2016.11.085 Google Scholar
  41. 41.
    Kokkinos, C.; Economou, A.: Disposable microfabricated 3-electrode electrochemical devices with integrated antimony working electrode for stripping voltammetric determination of selected trace metals. Sens. Actuators B: Chem. 192, 572–577 (2014).  https://doi.org/10.1016/j.snb.2013.11.040 Google Scholar
  42. 42.
    Castaneda, M.T.; Perez, B.; Pumera, M.; del Valle, M.; Merkoci, A.; Alegret, S.: Sensitive stripping voltammetry of heavy metals by using a composite sensor based on a built-in bismuth precursor. Analyst 130(6), 971–976 (2005).  https://doi.org/10.1039/B502486M Google Scholar
  43. 43.
    Niu, P.; Fernández-Sánchez, C.; Gich, M.; Ayora, C.; Roig, A.: Electroanalytical assessment of heavy metals in waters with bismuth nanoparticle-porous carbon paste electrodes. Electrochim. Acta 165, 155–161 (2015).  https://doi.org/10.1016/j.electacta.2015.03.001 Google Scholar
  44. 44.
    Tesarova, E.; Baldrianova, L.; Hocevar, S.B.; Svancara, I.; Vytras, K.; Ogorevc, B.: Anodic stripping voltammetric measurement of trace heavy metals at antimony film carbon paste electrode. Electrochim. Acta 54(5), 1506–1510 (2009).  https://doi.org/10.1016/j.electacta.2008.09.030 Google Scholar
  45. 45.
    Svobodova-Tesarova, E.; Baldrianova, L.; Stoces, M.; Svancara, I.; Vytras, K.; Hocevar, S.B.; Ogorevc, B.: Antimony powder-modified carbon paste electrodes for electrochemical stripping determination of trace heavy metals. Electrochim. Acta 56(19), 6673–6677 (2011).  https://doi.org/10.1016/j.electacta.2011.05.048 Google Scholar
  46. 46.
    Wonsawat, W.; Chuanuwatanakul, S.; Dungchai, W.; Punrat, E.; Motomizu, S.; Chailapakul, O.: Graphene-carbon paste electrode for cadmium and lead ion monitoring in a flow-based system. Talanta 100, 282–289 (2012).  https://doi.org/10.1016/j.talanta.2012.07.045 Google Scholar
  47. 47.
    Ashrafi, A.M.; Cerovac, S.; Mudrić, S.; Guzsvány, V.; Husáková, L.; Urbanová, I.; Vytřas, K.: Antimony nanoparticle-multiwalled carbon nanotubes composite immobilized at carbon paste electrode for determination of trace heavy metals. Sens. Actuators B: Chem. 191, 320–325 (2014).  https://doi.org/10.1016/j.snb.2013.08.087 Google Scholar
  48. 48.
    Sánchez, A.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Hierro, Id; Sierra, I.: A comparative study on carbon paste electrodes modified with hybrid mesoporous materials for voltammetric analysis of lead (II). J. Electroanal. Chem. 689, 76–82 (2013).  https://doi.org/10.1016/j.jelechem.2012.10.026 Google Scholar
  49. 49.
    Nguyen, P.K.Q.; Lunsford, S.K.: Square wave anodic stripping voltammetric analysis of lead and cadmium utilizing titanium dioxide/zirconium dioxide carbon paste composite electrode. J. Electroanal. Chem. 711, 45–52 (2013).  https://doi.org/10.1016/j.jelechem.2013.10.021 Google Scholar
  50. 50.
    Švancara, I.; Baldrianová, L.; Tesařová, E.; Hočevar, S.B.; Elsuccary, S.A.A.; Economou, A.; Sotiropoulos, S.; Ogorevc, B.; Vytřas, K.: Recent advances in anodic stripping voltammetry with bismuth-modified carbon paste electrodes. Electroanalysis 18(2), 177–185 (2006).  https://doi.org/10.1002/elan.200503391 Google Scholar
  51. 51.
    Martín-Yerga, D.; Álvarez-Martos, I.; Blanco-López, M.C.; Henry, C.S.; Fernández-Abedul, M.T.: Point-of-need simultaneous electrochemical detection of lead and cadmium using low-cost stencil-printed transparency electrodes. Anal. Chim. Acta 981, 24–33 (2017).  https://doi.org/10.1016/j.aca.2017.05.027 Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Chemistry DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Chemical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  3. 3.Center of Research Excellence in NanotechnologyKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations