Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1243–1253 | Cite as

Microstructural and Mechanical Evolution of Semisolid 7075 Al Alloy Produced by SIMA Process at Various Heat Treatment Parameters

  • Ali Tekin Guner
  • Derya Dispinar
  • Engin TanEmail author
Research Article - Mechanical Engineering
  • 62 Downloads

Abstract

A homogeneous equiaxed grain structure is necessary for semisolid forming of aluminum alloys. One of the methods used to obtain such microstructure is strain induced melt activated process. The aim of this work is to optimize the heat treatment parameters for extruded 7075 alloy required to obtain the spheroidal grain structure suitable for thixoforging. For this purpose, 7075 was subjected to isothermal heat treatment at two different temperatures, 620 and 630 \({^{\circ }}\)C for 5, 10, 15, 20, 25, 30, 35 and 40 min. Optical microscopy analysis and mechanical tests were carried out to characterize the effects of different isothermal heat treatment parameters. Optimal heat treatment parameters were determined by the change in mechanical properties and microstructure. It was found that at 630 \({^{\circ }}\)C for 25 min resulted in 564 MPa yield stress, 616 MPa tensile stress and 5.3% elongation as the highest values in the experimental work carried out in this study.

Keywords

SIMA Semisolid Isothermal Heat treatment 7075 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by Pamukkale University Scientific Research Projects Fund (PAUBAP), Project No. 2011FBE088.

References

  1. 1.
    Farzadi, A.; Bahmani, M.; Haghshenas, D.F.: Optimization of operational parameters in friction stir welding of AA7075-T6 aluminum alloy using response surface method. Arab. J. Sci. Eng. 42, 4905–4916 (2017).  https://doi.org/10.1007/s13369-017-2741-6 CrossRefGoogle Scholar
  2. 2.
    Zou, X.L; Yan, H.; Chen, X.H.: Evolution of second phases and mechanical properties of 7075 Al alloy processed by solution heat treatment. Trans. Nonferrous Met. Soc. China (English Ed. 27, 2146–2155 (2017).  https://doi.org/10.1016/S1003-6326(17)60240-1
  3. 3.
    Yildirim, M.; Özyürek, D.; Gürü, M.: The effects of precipitate size on the hardness and wear behaviors of aged 7075 aluminum alloys produced by powder metallurgy route. Arab. J. Sci. Eng. 41, 4273–4281 (2016).  https://doi.org/10.1007/s13369-016-2078-6 CrossRefGoogle Scholar
  4. 4.
    Sun, Y.; Jiang, F.; Zhang, H.; Su, J.; Yuan, W.: Residual stress relief in Al–Zn–Mg–Cu alloy by a new multistage interrupted artificial aging treatment. Mater. Des. 92, 281–287 (2016).  https://doi.org/10.1016/j.matdes.2015.12.004 CrossRefGoogle Scholar
  5. 5.
    Subramanian, M.; Sakthivel, M.; Sudhakaran, R.: Modeling and analysis of surface roughness of AL7075-T6 in end milling process using response surface methodology. Arab. J. Sci. Eng. 39, 7299–7313 (2014).  https://doi.org/10.1007/s13369-014-1219-z CrossRefGoogle Scholar
  6. 6.
    Cong, F.G.; Zhao, G.; Jiang, F.; Tian, N.; Li, R.F.: Effect of homogenization treatment on microstructure and mechanical properties of DC cast 7X50 aluminum alloy. Trans. Nonferrous Met. Soc. China (English Ed. 25, 1027–1034 (2015).  https://doi.org/10.1016/S1003-6326(15)63694-9
  7. 7.
    Ketabchi, M.; Mohammadi, H.; Izadi, M.: Finite-element simulation and experimental investigation of isothermal backward extrusion of 7075 Al alloy. Arab. J. Sci. Eng. 37, 2287–2296 (2012).  https://doi.org/10.1007/s13369-012-0320-4 CrossRefGoogle Scholar
  8. 8.
    Liu, T.; He, C.; Li, G.; Meng, X.; Shi, C.; Zhao, N.: Microstructural evolution in Al–Zn–Mg–Cu–Sc–Zr alloys during short-time homogenization. Int. J. Miner. Metall. Mater. 22, 516–523 (2015).  https://doi.org/10.1007/s12613-015-1101-3 CrossRefGoogle Scholar
  9. 9.
    Vinarcik, E.J.: High Integrity Die Casting Processes. Wiley (2002). https://www.wiley.com/en-us/High+Integrity+Die+Casting Processes-p-9780471275466
  10. 10.
    Altan, T.; Ngaile, G.: In: Altan T, Ngaile G, Shen G (eds) Cold and Hot Forging: Fundamentals and Applications. ASM International (2005). https://www.asminternational.org/search/-/journal_content/56/10192/05104G/PUBLICATION
  11. 11.
    Thixoforming: Semi-solid Metal Processing” Editor: Hirt G, Kopp R, Wiley (2009). https://www.wiley.com/en-us/Thixoforming%3A+Semi+solid+Metal+Processing-p-9783527623976
  12. 12.
    Atkinson, H.V.; Burke, K.; Vaneetveld, G.: Recrystallisation in the semi-solid state in 7075 aluminium alloy. Int. J. Mater. Form. 1, 973–976 (2008).  https://doi.org/10.1007/s12289-008-0220-z CrossRefGoogle Scholar
  13. 13.
    Flemings, M.C.; Riek, R.G.; Young, K.P.: Rheocasting. Mater. Sci. Eng. 25, 103–117 (1976).  https://doi.org/10.1016/0025-5416(76)90057-4 CrossRefGoogle Scholar
  14. 14.
    Guo, H.; Yang, X.; Wang, J.; Hu, B.; Zhu, G.: Effects of rheoforming on microstructures and mechanical properties of 7075 wrought aluminum alloy. Trans. Nonferrous Met. Soc. China (English Ed. 20, 355–360 (2010).  https://doi.org/10.1016/S1003-6326(09)60146-1
  15. 15.
    Young, K.P.; Kyonka, C.P.; Courtois, J.A.: Fine grained metal composition. https://patents.google.com/patent/US4415374 (1983)
  16. 16.
    Fu, J.-L.; Jiang, H.-J.; Wang, K.-K.: Influence of processing parameters on microstructural evolution and tensile properties for 7075 Al alloy prepared by an ECAP-based SIMA process. Acta Metall. Sin. (English Lett. (2017).  https://doi.org/10.1007/s40195-017-0672-6
  17. 17.
    Chayong, S.; Atkinson, H.V.; Kapranos, P.: Thixoforming 7075 aluminium alloys. Mater. Sci. Eng. A 390, 3–12 (2005).  https://doi.org/10.1016/j.msea.2004.05.004 CrossRefGoogle Scholar
  18. 18.
    Rikhtegar, F.; Ketabchi, M.: Investigation of mechanical properties of 7075 Al alloy formed by forward thixoextrusion process. Mater. Des. 31, 3943–3948 (2010).  https://doi.org/10.1016/j.matdes.2010.03.032 CrossRefGoogle Scholar
  19. 19.
    Sang-Yong, L.; Jung-Hwan, L.; Young-Seon, L.: Characterization of Al 7075 alloys after cold working and heating in the semi-solid temperature range. J. Mater. Process. Technol. 111, 42–47 (2001).  https://doi.org/10.1016/S0924-0136(01)00494-0 CrossRefGoogle Scholar
  20. 20.
    Bolouri, A.; Shahmiri, M.; Cheshmeh, E.N.H.: Microstructural evolution during semisolid state strain induced melt activation process of aluminum 7075 alloy. Trans. Nonferrous Met. Soc. China (English Ed. 20, 1663–1671 (2010).  https://doi.org/10.1016/S1003-6326(09)60355-1
  21. 21.
    Neag, A.; Favier, V.; Bigot, R.; Pop, M.: Microstructure and flow behaviour during backward extrusion of semi-solid 7075 aluminium alloy. J. Mater. Process. Technol. 212, 1472–1480 (2012).  https://doi.org/10.1016/j.jmatprotec.2012.02.003 CrossRefGoogle Scholar
  22. 22.
    Binesh, B.; Aghaie-Khafri, M.: Microstructure and texture characterization of 7075 Al alloy during the SIMA process. Mater. Charact. 106, 390–403 (2015).  https://doi.org/10.1016/j.matchar.2015.06.013 CrossRefGoogle Scholar
  23. 23.
    Jiang, J.; Wang, Y.; Xiao, G.; Nie, X.: Comparison of microstructural evolution of 7075 aluminum alloy fabricated by SIMA and RAP. J. Mater. Process. Technol. 238, 361–372 (2016).  https://doi.org/10.1016/j.jmatprotec.2016.06.020 CrossRefGoogle Scholar
  24. 24.
    Meshkabadi, R.; Faraji, G.; Javdani, A.; Pouyafar, V.: Combined effects of ECAP and subsequent heating parameters on semi-solid microstructure of 7075 aluminum alloy. Trans. Nonferrous Met. Soc. China (English Ed. 26, 3091–3101 (2016).  https://doi.org/10.1016/S1003-6326(16)64441-2
  25. 25.
    Li, M.; Li, Y.; Bi, G.; Huang, X.; Chen, T.; Ma, Y.: Effects of melt treatment temperature and isothermal holding parameter on water-quenched microstructures of A356 aluminum alloy semisolid slurry. Trans. Nonferrous Met. Soc. China (English Ed. 28, 393–403 (2018).  https://doi.org/10.1016/S1003-6326(18)64673-4
  26. 26.
    Zhou, B.; Kang, Y.L.; Zhu, G.M.; Gao, J.Z.; Qi, M.F.; Zhang, H.H.: Forced convection rheoforming process for preparation of 7075 aluminum alloy semisolid slurry and its numerical simulation. Trans. Nonferrous Met. Soc. China (English Ed. 24, 1109–1116 (2014).  https://doi.org/10.1016/S1003-6326(14)63169-1
  27. 27.
    Kılıclı, V.; Akar, N.; Erdogan, M.; Kocatepe, K.: Tensile fracture behavior of AA7075 alloy produced by thixocasting. Trans. Nonferrous Met. Soc. China (English Ed. 26, 1222–1231 (2016).  https://doi.org/10.1016/S1003-6326(16)64223-1
  28. 28.
    Yan, G.; Zhao, S.; Ma, S.; Shou, H.: Microstructural evolution of A356.2 alloy prepared by the SIMA process. Mater. Charact. 69, 45–51 (2012).  https://doi.org/10.1016/j.matchar.2012.04.005 CrossRefGoogle Scholar
  29. 29.
    Mohammadi, H.; Ketabchi, M.; Kalaki, A.: Microstructural evolution and mechanical properties of back-extruded Al 7075 alloy in the semi-solid state. Int. J. Mater. Form. 5, 109–119 (2012).  https://doi.org/10.1007/s12289-010-1022-7 CrossRefGoogle Scholar
  30. 30.
    Gecu, R.; Acar, S.; Kısasoz, A.; Altug Guler, K.; Karaaslan, A.: Influence of T6 heat treatment on A356 and A380 aluminium alloys manufactured by thixoforging combined with low superheat casting. Trans. Nonferrous Met. Soc. China (English Ed. 28, 385–392 (2018).  https://doi.org/10.1016/S1003-6326(18)64672-2
  31. 31.
    Zhang, Q.Q.; Cao, Z.Y.; Zhang, Y.F.; Su, G.H.; Liu, Y.B.: Effect of compression ratio on the microstructure evolution of semisolid AZ91D alloy. J. Mater. Process. Technol. 184, 195–200 (2007).  https://doi.org/10.1016/j.jmatprotec.2006.11.022 CrossRefGoogle Scholar
  32. 32.
    Thixoforming Processing of Aluminium 7075 Alloy, Ph.D. Thesis, University of Sheffield (2002). http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251217
  33. 33.
    ASM International: ASM Handbook Volume 2 Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. (2001)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Automotive Engineering, Faculty of TechnologyPamukkale UniversityDenizliTurkey
  2. 2.Department of Metallurgical and Materials Engineering, Faculty of EngineeringIstanbul UniversityIstanbulTurkey
  3. 3.Department of Metallurgical and Materials Engineering, Faculty of TechnologyPamukkale UniversityDenizliTurkey

Personalised recommendations